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PREFACE

The object of this text-book is to furnish a natural

but thorough introduction to the principles and applica-

tions of Analytic Geometry for students who have a

fair knowledge of Elementary Geometry, Algebra, and

Trigonometry.

The presentation is descriptive rather than formal.

The numerous problems are mainly numerical, and are

intended to give familiarity with the method of Analytic

(ieometry, rather than to test the student's ingenuity in

guessing riddles. Answers are not given, as it is thought

better that the numerical results should be verified by

actual measurement of figures carefully drawn on cross-

section paper.

Attention is called to the applications of Analytic

Geometry in other branches of Mathematics and Physics.

The important engineering curves are thoroughly dis-

cussed. This is calculated to increase the interest of the

student, aroused by the beautiful application the Analytic

Geometry makes of his knowledge of Algebra. The

historical notes are intended to combat tlie notion that

a mathematical system in all its completeness issues

Minerva-like from the brain of an individual.

P. A. LAMBERT.

80()5,';4
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ANALYTIC GEOMETRY

CHAPTER I

EEOTANGULAK COORDINATES

Art. 1.

—

Introduction

The object of analytic* geometry is the study of geometric

figures by tlie processes of algebraic analysis.

The three fundamental problems of analytic geometry are:

To find the equation of a geometric figure or the e(;[uations

of its several parts from its geometric definition.

To construct the geometric figure represented by a given

equation.

To find the relations existing between the geometric prop-

erties of figures and the analytic properties of equations.

Art. 2.— Coordinates

Any scheme by means of which a geometric figure may be

represented by an equation is called a system of coordinates.

* The reasoning of pure geometry, the geometry of Euclid, is mainly

synthetic, that is, starting from something known we pass from conse-

(luence to consequence until something new results. The reasoning of

algebra is analytic, that is, assuming what is to be demonstrated we pass

from consequence to consequence until the relation between the unknown

and the known is found. The term "analytic geometry" is therefore

equivalent to algebraic geometry. The application of algebra to the de-

termination of the properties of geometric figures was invented by

Descartes (1596-1050), a French philosopher, and published in Leyden

in 1G37.
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The coordinates of a point are the quantities which deter-

mine the position of the point.

Along the line of a railroad the position of a station is

determined by its distance and direction from a fixed station

;

on our maps the position of a town is determined by its lati-

tude and longitude, the distances and directions of the town
from two fixed lines of the map ; the position of a point in a

survey is determined by its distance and bearing from a fixed

station.

On these different methods of determining the position of

a point are based different systems of coordinates.

Akt. 3. — The Point in a Straight Line

On a straight line a single quantity or coordinate is sufficient

to determine the position of a point. Let be a fixed point

-8 -7 .-6 -5 -4 -3-2-10 1 2 3 4 5 6 7 8

Fio. 1.

in the line; adopt some length, such as 01, as the linear unit;

call distances measured from towards the right positive, dis-

tances measured from towards the left negative. Let a

point of the line be represented by the number which ex-

presses its distance and direction from the fixed point 0.

Then to every real number, positive or negative, rational or

irrational, there corresponds a definite point in the straight

line, and to every point in the line there corresponds a definite

real number. This fact is expressed by saying that there is

a " one-to-one correspondence " between the points of the line

and real numbers.

The algebra of a single real variable finds a geometric inter-

pretation in the straight line. Denoting by x the distance

and direction of a point in the straight line from 0, that is

letting X denote the coordinate of the point, the equation

cc^ — 2a; — 8 = locates the two points (4), (— 2), in the

straight line.
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Problems. — 1. Locate in the straight Hue the points 3; —2; 1^ ;

-2.5; -5; f.

2. Locate VG ; -VS; VlO ; VT.

Suggestion. — The numerical value of VS can be found

only approximately. The hypotenuse of a rit;ht triangle /^
whose two sides about the right angle are 2 and 1, repre- '^/

sents v'5 exactly.
I

3. rind the point midway between xj and x^. Fig. 2.

4. Find the point dividing the line from Xi to X'2 internally into seg-

ments whose ratio is /•.

5. Find the puiiit dividing the lino from Xi to X2 externally into seg-

ments wiinsi' ratio is r.

6. Locatt! the roots of a;2 + 2 a; - 8 = 0.

7. Locate the roots of xr — i x — i = 0.

8. Locate the roots of x^ - x- + 11 x - = 0.

9. Find the points dividing into three equal parts the line from 2

to 14.

10. Find the points dividing into three ecjual parts the line from X]

to X.J.

11. Find the point dividing a line 8 feet long internally into segments

in the ratio 3 : 4.

12. A uniform bar 10 feet long has a weight of 15 pounds at one end,

of 25 pounds at the other end. Find the point of support for equilib-

rium.

Al^T. 4. — Thk Poikt in a Plane

To determine the position of a point in a plane, assume two
straight lines at right angles to each other to be fixed in the

plane. These lines are called the one the A'-axis, the other

the F-axis. The distance from a point, in llic plane to either

axis is moasiired on a line ]):ira]l('l to tlie other axis; the

direction of the point I'roui tlic axis is indicated by the alge-

braic sii^n prchxcd to the nniiilicr expressing,' tlie distance from
tlio axis.
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Distances measured parallel to the X-axis to the right from

the l''-axis are called positive ; those measured to the left from

the F-axis are called negative. The distance and direction of

a point from the T-axis is called the abscissa of the point, and

is denoted by x.
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ami equidistant from the straight line is a straight line parallel

to the given line.

The ordinate of a point determines a straight line parallel to

the X-axis in which the point must lie.

If both ordinate and abscissa of a point are known, the point

must lie in each of two straight lines at right angles to each

other, and must, therefore, be the intersection of these lines.

I lence ordinate and abscissa together determine a single point

in the plane.

Conversely, to a point in the plane there correspomls one

ordinate and one abscissa. For through the point only one

straight line parallel to the I'-axis can be drawn. This fact

determines a single value for the abscissa of the point.

Through the given point only one parallel to the X-axis can

be drawn. This determines a single value for the ordinate of

the i)oint.

The abscissa and ordinate of a point as defined are together

the rectangular* co-

ordinates of the point.

The point whose co-

ordinates are x and y
is spoken of as the

point (.r, ?/). There is

a " one-to-one corre-

spondence " between

the symbol (x, y) and

the points of the

Xl'-plane.

Problems.— 1. Locate the point (3, — 4).

Lay off ;] linear units on the X-axis to the right from the origin, and

thrru is found the straight line parallel to the 3'-axis, in whicli the point

must lie. On this line lay off 4 linear units downward from its intersec-

tion with tlie J-axis, and the point (3, — 4) is located.

* This method of representing a point in a plane was invented by Des-

cartes. Hence these coordinates are also called Cartesian coordinates.
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2. Locate (-3,0); (0,4); (1, -1); (-1,-1); (-7,5); (10,-7);

(15, 20).

3. Locate (2i^3); (- 1, SJ); (% - 51)^(7.8, - 4.5).

Locate (V2, \/5); (-Va, Vl7); (V50, V75).

Construct the triangle whose vertices are (4, 5), ( — 2, 7),

Find the point midway between (4, 7), (0, 5).

Find the point midway between (x', y'), (a;", y").

Find the area of tlie triangle whose vertices are (0, 0), (0, 8), (0,0).

Find the area ol the triangle whose vertices are (2, 1), (5, 4), (9, 2).

4.

1.

-3, -6).
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15. Show that the points (1, 4), (3, 2,), (- 3, 8) lie in a straight line.

16. The vertices of a pentagon are (-J, 3), (— 5, 8), (11, — 4), (0, 12),

(14, 7). Plot the pentagon and find its area.

17. A piece of land is bounded by straight lines. From the survey

the rectangular coordinates of the stations at the corners referred to

a N. S. line and an E. W. line through station A are as follows, distances

measured in chains

:

^00 D 22.85 17.19

B 14.30 - 15.04 E 7.42 40.09

C 22.85 -4.18 F -8.29 29.80

Plot the survey and find the area of the piece of land.

18. Find tiie point which divides the line from (x', y') to (x", y")

internally into segments whose ratio is r.

19. Find the point which divides the line from (x', y') to (x", y")

externally into segments whose ratio is r.

20. Locate the points (2, — 9), (— fi, 5), and also the points dividing

the line joining them internally and externally in the ratio 2 : 3.

21. Show that the points (x, y), (x, — y) are symmetrical with respect

to the X-axis.

22. Show that the points (x, y), (— x,y) are symmetrical with respect

to the r-axis.

23. Show that the points (x, y), (— x, ~ y) are symmetrical with

respect to the origin.

Art. 5. — Distance between Two Points

The distance between the points (x', ?/'), (x", y") is the hypote-

nuse of the right triangle

whose two sides about the

riglit angle are («' — x")

and {y' — y"). Hence

d = ^{x' -x"y + (y'-y"f.

Problems.— 1. Find distance

between the points (4, 2) , (7, 5)

;

(-3,6), (4,-9); (0,8), (7,0); F,,;. r,.

(15, -17), (8,2); (-4, -7), (-12, -19).

2. Derive formula for distance from (x', y') to the origin.

3. Find distance from origin to (5, 9) ; (7,-4); (12,-15); (
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4. Find the lengths of the sides of the triangle whose vertices are

(-3, -2), (7,8), (-5,0).

5. Tlie vertices of a triangle are (0, 0), (4, —5), (—2, 8). Find

the lengths of the medians.

6. Find the distance between the middle points of tlie diagonals of

the quadrilateral whose vertices are (2, 3), (—4, 5), (6, - 3), (U, 7).

7. Show that the points (6, 0), (1^, 15), (- 3, - 12), (- 7^, - 3)

are the vertices of a parallelogram.

8. Find the center of the circle circumscribing the triangle whose ver-

tices are (2, 2), (7, - 3), (2, - 8).

9. Find the equation which expresses the condition that the point

(x, y) is equidistant from (4, - 5), (— 3, 7).

10. Find the equation which expresses the condition that the distance

from the point (x, y) to the point ( — 3, 2) is 5.

11. Find the equation which locates the point (x, y) in the circum-

ference of a circle whose radius is r, center (a, b).

Akt. 6.— Systems of Points in the 1'lane

If any two quantities, which may be called x and y, are so

related that for certain values of x, the corresponding values

of y are known, the different pairs of corresponding values of

X and y may be represented by points in the XF-plane.

Comparative statistics and experimental results can fre-

quently be more concisely and more forcibly presented graphi-

cally than by tabulating numerical values. In the diagram

the abscissas represent the years from 1878 to 1891, the corre-

sponding ordinates of the full and dotted lines the production

of steel in hundred thousand long tons in the United States and

Great Britain respectively.* The diagram exhibits graphically

the information contained in the adjacent table, condensed

from " Mineral Kesources," 1892. Observe that if the points are

* In the figure the linear unit on the X-axis is 5 times the linear unit

on the r-axis. It will be noticed that the essential feature of a system

of coordinates, the "one-to-one correspondence" of the symbol (x, y)

and the points of the A"l'-plane, is not disturbed by using different scales

for oidiuates and abscissas.



RECTANGULAR COORDINATES 9

inaccurately located the diagram becomes not only worthless,

but misleading.

45i

1878 '79



10 ANALYTIC GEOMETRY

2. Commercial value of one ounce gold in ounces silver from 1855 to

1894. (Report of Director of Mint.)

1855
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In these problems it is evident that theoretically there corresponds

a determinate value of the ordinate to every value of the abscissa. Hence
the ordinate is called a function of the abscissa, even though it may be

impossible to express the relation between ordinate and abscissa by a

formula or analytic function.

5. Suppose a body falling freely under gravity down a vertical guide

wire to have a pencil attached in such a manner that the pencil traces

a line on a vertical sheet of paper moving
horizontally from right to left with a uni-

form velocity. To determine the relation

between the distance the body falls and the

time of falling.*

Take the vertical and horizontal lines

through the starting point as axes of refer-

ence, and let 01, 12, 23, •••, be the equal

distances through which the sheet of paper

moves per second, the spaces 05, 510, ••, on
the vertical axis represent 5 feet. Then
the ordinate of any point of the line traced

by the pencil represents the distance the

body has fallen during the time represented

by the abscissa of the point. Careful meas-

urements show that the distance varies as

the square of the time. Calling the distance

.s', the time t, the distance the body falls

the first second \ g, where g is found by
experiment to be 32.16 feet, the relation

between ordinate and abscissa of the line

traced by the pencil is expressed by the
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6. A body is thrown horizontally with a velocity of v feet per second.

The only force disturbing the motion of the body taken into account is

gravity. Find the position of the body t seconds after starting.

Calling the starting point the origin, the horizontal and vertical lines

through the origin the A'-axis and F-axis respectively, the coordinates of

the body t seconds after starting are x — vt, y = — ^ gfi. Eliminating t,

y = 2_ X-, an equation which expresses the relation existing between
2 v^

the coordinates of all points in the path of the body.



CHAPTER II

EQUATIONS OF GEOMETRIO EIGUEES

Art. 7.— The Straight Line

A point moving in a plane generates either a straight line

or a plane curve. Frequently the geometric law governing tlie

motion of the point can be directly expressed in the form of

an equation between the coordinates of the point. This equa-

tion is called the equation of the geometric figure generated

by the point.

Draw a straight line through the origin. By elementary

geometry -^" = -^ = ^^ = • • •. This succession of equal ratios

..Irt Aa^ Aa.2

expresses a geometric property

which characterizes points in the

straight line ; for every point in

the line furnishes one of these

ratios, and no point not in the

straight line furnishes one of these

ratios. Calling the common value

of these ratios m, and letting x

and y denote the coordinates of

any point in the line, the equation

y = mx expresses the same geo-

metric property as the succession of equal ratios. Hence if tlie

point (x, y) is governed in its nurtion by the equation, it generates

a straight line through the origin. Uy trigonometry m is the

tangent of the angle through which the X-axis must be turned

anti-clockwise to bring it into coincidence with the straight line.

13
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8. Find the equation of the locus of the points equidistant from (7, 4),

(-3, -5).

9. Find the equation of the straight line bisecting the line joining

(2, — 5), (G, 3) at right angles.

AiiT. 8. — The Circle

According to the geometric definition of the circle the point

(x, y) describes the circumference of a circle with radius r,

center (a, b), if the point (x, y) moves in the XF-plane in such

a manner that its distance from (a, h) is always r. This con-

dition is expressed by the equation {x — a)- + (y — b)- = r,

which is therefore the equation of a circle.

Problems. — 1. Write the equation of the circle whose radius is 5,

center (2, - 3).

2. Find the equation of the circle with center at origin, radius r.

3. Find equation of circle radius 5, center (5, 0).

4. Find equation of circle radhis 5, center (5, 5).

5. Find equation of circle radius 5, center (—5, 5).

6. Find equation of circle radius 5, center (—5, — 5).

7. Find equation of circle radius 5, center (0, — 5).

8. Find equation of circle radius 5, center (0, 5).

Art. 9.— Thk Comc Sections

After studying the straight line and circle, the old Greek

mathematicians turned their attention to a new class of curves

which they called conic sections, because these curves Avere

originally obtained by intersecting a cone by a plane. Tt was

soon discovered that these curves may be defined thus

:

A conic section is a curve traced by a point muving in a

plane iiisucli_a manner tliatthe ratio of the distances from the

moving point to a fixed point and to a fixed line is constant.

This definition will be used to construct these curves, to

obtain their properties, and to find their equations. The fixed

point is called the focus, the fixed line the directrix of the

conic section. When the constant ratio, called the character-

istic ratio and denoted by e, is less than unity, the curve is
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called au ellipse ; when greater than unity, an hyperbola

;

when equal to unity, a parabola.*

The following proposition is due to Quetelet (1796-1874), a

Belgian scholar

:

If a right circular cone is cut by a plane, and two spheres

are inscribed in the cone tangent to the plane, the two points

of contact are the foci of the section of the cone by the plane

;

and the straight lines in which this plane is cut by the planes

of the circles of contact of spheres and cone are the directrices

corresponding to these two foci respectively.

Let the plane cut all the elements of one sheet of the cone.

F, F' are the points of contact of the spheres with the cutting

plane; F any point in the intersection of plane and surface of

cone ; T, T' the points of contact

of element of cone through P
with spheres. The plane of the

elements Sa, Sa' is perpendicular

to the cutting plane and the plane

of the circles of contact. Since

tangents from a point to a sphere

are equal, PF= FT, FF = FT'.

Hence

FF+ FF' = FT+ FT' = TT',

Fig. 11. a constant. Through F draw

DD' perpendicular to the parallels HH', KK'. From the simi-

lar triangles FDT and FD'T',
FT
FT

PD
FD'

hence

r>y composition
FF PD
TT

-, by interchanging means,
1)1/ ^ * * ' FD

PF ^ PD
FF' PD''
PF _ TV

DD''
J^W" PD' P77"

a constant. Similarly, ^^- = -^, i-^
^'TT' DD'' PD'

TT
DD

• Call the points

* Cayley, in the article on Analytic Geometry in tlie Britannioa, niiiMi

edition, calls this definition of conic sections the definition of Apolloiiius.

ApoUonius, a Greek mathematician, about 203 b.c, wrote a treatise on

Conic Sections.
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of intersection of the straight line FF' with the section of

the cone V, V'. Since

VF + VF = FF' + 2 VF = TT
and VF + VF' - FF + 2 VF = TT',

VF=VF'
and T 'F+ VF = VF' + 1

7^" = I 'V = 2'7^

Hence the constant ratio 77^ = 7777,
i^^ l*^ss than unity, and the

conic section is an ellipse.

It is seen that the ellipse may also be defined as the locus of

the points, the snni of whose distances from two fixed points,

the foci, is constant.

Let the plane cut both sheets of the cone. With the same

notation as before, PF= PT PF' = PT' ; lienee

PF- PF' = TV = a constant.

, PT PD
From the similar triangles PDT and PD'T

, ^^,= 7777,;

PP PD PF PI) ,
' ^ ^ ^

hence — =-—. P.y division £±- = ±^- hence
PF' PD' ^ TV DD'

PF ^ TV
PD DD'

a constant.
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Similarly, = is greater than unity, and the
PD' DD'' DB'

conic section is an hyperbola.

The hyperbola may also be defined as the locus of points, the

difference of whose distances from the foci is constant.

Let the cutting plane and the element MN make the same
angle 6 with a plane perpendicular to the axis of the cone.

The intersections of planes through the element 3fN with the

cutting plane are perpendicular to the intersection of cutting

plane with plane of circle of contact.

FF=: FT— MN= PD, and the conic section is a parabola,

focus F, directrix HIl'.

Art. 10.

—

The Ellipse, e<l
Construction.— Let F be the focus, HH' the directrix.

Througli F draw i^Vr perpendicular to HH', &nd on the perpen-

dicular to FK through

F take the points P
and P' such that

PF ^P'F^
FK FK ^'

Through K and P, and

through A"and P', draw

straight lines. Draw
any number of straight

lines parallel to HH',
intersecting KP and

KP' in r?„ n^, n^, v^, •••,

FK in ?)?j, m-j, vi^, •••.

With F as center and

mj?;, as radius describe

an arc intersecting niit,

in R. Then

H
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and Pi is a point in tlie ellipse. Similarly, an infinite number

of points of the cnrve may be located.

Definitions.— The perpendicular through the focus to the

directrix is called the axis of the ellipse. The axis intersects

the curve in the points V and V', dividing FK internally and

externally into segments whose ratio is e. The points V and

F' are called the vertices, the point A midway between V
and V, the center of the ellipse. The finite line VV is the

transverse axis or major diameter, denoted by 2a; the line

PjPi perpendicular to VV at A and limited by the curve is

the conjugate axis or minor diameter, denoted by 26; the

finite line PP' is called the parameter of the ellipse, denoted

by 2p. The lines KP and KP' are called focal tangents.

The ratio of the distance from the focus to the center to the

semi-major diameter is called the eccentricity of the ellipse.

Properties. — The foci F and F' are equidistant from the

center A. By the definition of the ellipse VF = e • VK,

V'F= e ' VK Subtracting, FF' = e- VV. Dividing by 2,

AF = e • AV Hence e = ^^—~, that is, in the ellipse the
o

eccentricity equals the characteristic ratio.

FP
By definition ? = e, and by construction^ AK ^

FP,= An,

By definiti(m eccentricity e = =^
^ ^ AV a

From the figure, VF= AV— AF= a — ae = a (1 — e)
;

VF = AV + vlP= a + ae = a(l + e).

FPand VF' are called the focal distances.

VT+ V'T _VF+ V'F_
^^

2 2
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15y clefinitiun ^ = e, hence FA^= "'^^~^^ ^^=e,

hence V'K^''-^^-^^-
e

From the fiLnire i^/f= ^lA"- .li^= 'i - ae = "'^^~^'^
;

F'A'= .1A + AF' = 1^ + «e = li(l±i^.

By cletiiiitiou

--^= e, henceFK ' p — ail — e-)— a[ 1
-^
— = a— =—

\ a- J a^ a

Equation— Take the axis of the ellipse as X-axis, the

perpendicular to the axis through the center as F-axis. Let P
be any point of the curve,

its coordinates x and y.

Tlie problem is to express

the definition PF=e- PH
by means of an e(]uation

between x and y. The
definition is equivalent to

PF''=e^-PH\ which is

the same as

pff + (AD + AFf
= e\AK+ADy,

which becomes y'^ + (x + aey — e^[ - + a;
]

,

reducincf to — + ——

^

= 1.

a' a\l - e')

Since the point (o, b) is in the curve, a\l — e^) = 6', and the

equation finally becomes - -f-^= 1,
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Summary.— Collfrtiiig tlic results of the preceding pani-

graphs, the fuudanieutal properties of the ellipse -- -f •
,
= 1 are :

a- b'^

Distance from focus to extremity of conjugate diameter a

Distance from center to directrix -
e

Distance from focus to center ae

Distance from focus to near vertex

Distance from focus to far vertex

Distance from directrix to near focus

Distance from directrix to far focus

Distance from directrix to near vertex

Distance from directrix to far vertex

Eccentricity

Square of semi-conjugate diameter

Semi-parameter

Art. 11.— The Hyperbola, e>l

Construction.— Draw FK through the focus F perpendicular

to the directrix ////'. On the perpendicular to FK through F
take the i)oints P and P' such that -—- =—- = e. Through K

^ FA FK
and P, and through K and P' draw straight lines. Draw any

number of parallels to ////', and on these parallels locate points

of the curve exactly as was done in the ellipse. The hyperbola

consists of two infinite branches. The vertices Fand V divide

FK internally and externally into segments whose ratio is e.

The construction shows that the parallels to ////' l)etween V
and V do not contain points of the curve. The notation is the

same as for the ellipse.

a(l-e)
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Properties.— From the definition of the hyi)erbohi VF— e • VK,

V'F^e V'K. Adding FF'=e- VV] dividing by 2, jLF^e-AV.

eccentricity, that is in the hyperbola also theHence
AF

characteristic ratio equals the eccentricity.
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tlii'oai;li llic (•('iittn- as I'-axis. Let /' he any ituiiit of the curve,

its coordinates x and //. The piubleiu is to express the delini-

tiou FF=e- PH by lueaus ot an e(iuation between x and y.
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Distance from vertex to extremity uf coiijujjate diameter ae

Distance from fucus to center

Distance from focus to near vertex

Distance from focus to far vertex

Distance from directrix to near vertex

Distance from directrix to far vertex

Distance from directrix to near focus

Distance from directrix to far focus

Eccentricity

Square of semi-conjugate diameter

Semi-parameter

ae
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The problem is to express the deliiiitioii PF= I)K by means

of an eqnation between x and y. The definition may bo written

1^'^ = UK', which is the same as PD' + TTf = ( VI> + VKf,
wliich becomes

if + i^c-^pf^ix + llif,

re(bicing to y- = 2 jkv-

A parabola whose focus and directrix are known may be

generated mechanically as in-

dicated in the figure.

Problems. — 1. Construct the el-

lipse wliosc pariviiK'ter is G, eccentri-

city 2.

2. Construct tlie hyperbola whose

panuueter is S, eccentricity
J.

3. Construct the ellipse whose

diameters are 10 and 8. Find tlie

equation of the ellipse, its eccentri-

city, and parameter.

4. Construct the hyperbola whose diameters are 8 and C>. Find Uw.

e(iuation of the liyperbola, its eccentricity, and parameter.

5. Construct the parabola whose parameter is 12 and find its e(iuation.

6. Find the equation of the ellipse whose eccentricity is j^, major

diameter 10.

7. The diameters of an hyperbola are 10 and 0. Find distances from

center to focus and directri.K.

8. The distances from focus to vertices of an hyperbola are 10 and 2.

Find diameters.

H
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12. In the ellipse — + '" = 1 show that the distances from the foci to

a- h-

the point (x, y) are r = a - ex, r' = a + ex. r and »•' are called the focal

radii of the point (;c, //). The sum of the focal radii of the ellipse is con-

stant and equal to 2 a.

x"
13. In the hyperbola ^- = 1 show that the focal radii of the point

5-

The constant difference of the focal(x, ?/) are r — ex - a, r = ex + a,

radii of the hyperbola is 2 u.

14. Find the equation of the ellipse directly from the definition: The

ellipse is the locus of the points the sum of whose distances from the foci

equals 2 a.

Take the line through the foci as A'-axis, the point midway between

the foci as origin. When the point (x, y) is on the F-axis its distances

from F and F' are each equal to a.

Call AF — AF' = c, the distance of

(x, y) when on the T-axis from the

origin b. Then ci^ - c- = b'\ The

geometric condition PF + PF' = 2 a

is expressed by the equation
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The inechiuiical fonstnictidu of tho hyperbola is effected as indicated

in tlie figure.

""



CHAPTER III

PLOTTING or ALGEBEAIO EQUATIONS

AuT. 13.— General Theory

The locus of the points (x, y) whose coordinates are the pairs

of real values of x and y satisfying the equation f(;x, y) = is

called the graph or locus of the equation.

Constructing the graph of an equation is called plotting the

equation, or sketching the locus of the equation.

An equation f{x, y) = is an algebraic equation, and ?/ an

algebraic function of x, when only the operations addition, sub-

traction, multiplication, division, involution, and evolution

occur in the equation, and each of these only a finite number

of times.

When the equation has the form y =f(x), y is called an

explicit function of x; when the equation has the form

f(x, ?/) =0, y is called an implicit function of .a*.

The locus represented by an equation f(x, y) — depends

on the relative values of the coefficients of the equation. For

mf{x, y) = 0, wliere m is any constant, is satisfied by all the

pairs of values of x and y which satisfy f(x, ?/) = 0, and by no

others.

If the graphs of two equations /i(.)-, y) = 0, /.(.r, y) =0 an'

constructed, the coordinates of the points of intersection of

these graphs are the pairs of real values of x and y which

satisfy /i {x, y) = and f, {x, y)—0 simultaneously.

Occasionally it is possible to obtain the geometric definition

of a locus directly from its equation, and then construct the

locus mechanically. The equation x^ -^-y"^ = 25 is at once seen

28
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to represent a circle with center at oritijin, radius 5. In general

it is necessary to locate point after point of the locus by assign-

ing arbitrary values to one variable, and computing the corrc-

si)onding values of the other from the equation.

Akt. 14.— Locus OF First Degukk Equation

The locus of the general first degree equation Itotween two

variables x and y, Ax -\- B>/ + C = 0, is the locus of

^ b"^ B
Moving the locus represented by this equation parallel to the

I'-axis upward through a distance -'^, increases each ordinate

fi ^ ...
l)y — . Hence the equation of the locus in the new position is

?/ = — — .r, which represents a straight line through the origin,

since the ordinate is proportional to the abscissa. The equa-

tion Ax -\- By + C = () therefore represents a straight line whose

slope is — --, and whoso intercept on the F-axis is — —
.

The

intercept of this line on the X-axis, found by placing y equal

to zero in the equation and solving for x, is —-•

The straight line represented by a lirst degre(> c(pi:iii(>u may

be constructed by determining the point of intersection of th((

line with the F-axis and the slope of the line, by dcici'mining

any point of the line and the slope of tlie line, by determining

the points of intersection of the line with tlie coordinate axes,

by locating any two points of the line.

Problems.— Construct by the different methods the linos repn^sentcd

by the equations.

1. 2x + 32/ = 6. 3. \x-\y = \. 5. •%;( = 1-

2. j/ = x-5. 4. ix-4?/ = 2. 6. ^+^-1.
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7. Show that ?/- — 2 .r>j — 8 x- = represents two straight lines through

the origin.

8. Show that a homogeneous equation of the ?ith degree between x and

y represents n straight lines through the origin.

9. Construct the straight line ^ 4- ^ = 1 and the circle x- + 2/" = 25

and compute the coordinates of the points of intersection. Verify by

measurement.

AiiT. 15.— Stuaigiit Ltxe through a Point

Tliroiigh the fixed point (Xf,.

an an.ufle « with the X-axis.

yo) draw a straight line making

Let (x, y) be any point of this

line, d the distance of (;r, ?/)

from (.r,|, ?/(,). From the figure

X — a'o = d cos a, y — ?/o
--= d sin a,

whence x = .r,, 4- d> cos a,

y = y^^ + d sin a,

an d y— ?/„= tan a (x

—

.r„). That

is, if a i)oint (a-, y) is governed

in its motion by the ecpiation

Fro. 22. 1/
~

1/0 = tan a (x — x,|),

it generates a straight line

through (a'o, ?/o), making an angle a with the X-axis, and the

coordinates of the point in this line at a distance d from (.r,„ ?/„)

are x = Xo-\- d cos a, y = yQ-\- d sin a. The distance, d, is posi-

tive when measured from (xq, y^) in the direction of the side of

the angle a through (x„, 7/,,) ; negative Avhen measured in the

opposite direction.
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3. Write the oiiuation of the s(rai,i;ht line tlimu-li ( - 2, 5) and making

an angle of 45 with the A'-axis.

4. Write the equation of the straight line thniugh (4, - 1) wiiose

slope is J.

5. Find the distances from the point (2, ;5) to the points of intersection

of the line through this point, making an angle of 30° with the A'-axis

and the circle x^ + y'^ = 25.

The coordinates of any point of the given line are x = 2 + (?cos.OO\

y = 3 + d sin 30°. These values of x and y substituted in the equation of

the circle x^ + ?/ = 25 give the equation d^ + (4 cos 30° + 6 sin 30°)rt = 12,

which determines the values of d for the points of intersection.

AiJT. 16. — Taxcexts

To plot a numerical algebraic equation involving; two vari-

ables, put it into the form y=f(x) if possible. Comi)uto the

values of y for different values of x, and locate the points whose

coordinates are the pairs of corresponding real values of x and

?/. Connect the successive points by straight lines, and observe

the form towards which the broken line tends, as the nunilicr

of points locaiod is indofinitoly increased. This limit of tlu^

broken line is tlic locus of tlie eqnatiim.

ExAiNrPLK. — Plot ?/- + a-- = 9.

Here y = ± V'.) — x-, a- = d

.T = —

4

—3

ji
= ± V^^

+1
±3 • ±2V2

or extracting the roots

r = - ;; - 2

,/ = ± 2.2;;7 ±2. SI'S

// has two iMimerically equal values for each value of x.

Hence the locus is symmetrical w^ith respect to the X-axis.

For a like reason the locus is symmetrical with respect to the

: V'.) - y-.

— 2
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Y

I'-axis. For values of a- > + 3 and for values of a;< — 3,

y is imaginary. Hence the curve lies between the lines

a; = +3, a; = — 3. The curve also lies between the lines ?/= +3,

y=—o. Locating points of the

locus and connecting them by

straight lines, the figure formed

apjjroaches a circle more and

more closely as the number of

points located is increased. The
form of the equation shows at

once that the locus is a circle

whose radius is 3, center the

origin.

Through a point (.t,,, ?/„) of the

circle an infinite number of

straight lines may be drawn. The coordinates of any point of

the straight line y — ?/o
= tan a{x — a;,,) through (.?(„ ?/(,), making

an angle a with the X-axis are .t = ccq + dcos, a, y — ?/„ + f' sin n.

The point (x, y) is a point of the circle x"^ -{-y^ = 9 wlien

(x„ + d cos ay + (,Vo + (I sin a)' = 9,

that is, when

(1) (.i-,2 + 7/,/ - 9) + 2 (cos a • a-o + sin a y„)d + (1~ = 0.

Equation (1) determines two values of d, and to each of these

values of d there corresponds one point of intersection of line

and circle. Since the point

(xo, ?/o) is in the circle x^ -i-
y'^ = 9,

the first term of equation (I) is

zero, hence the equation has two

roots equal to zero when

cos n • .T„ + sin a • v/,, = 0,

that is, when tan « =
.Vo
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eqiialiuu (1) ;iic! zero, Hit- two jH»iiil„s ol' iiitL'rsi'clitiii of the

straight line // — y,, = t;ui <« (,f — .r„) and the eircle x'- + j/- — \)

coincide at {j\„ //„), and the line is the tangent to the circle

(.?•„, _?/„). Hence the eqnation of the tangent to the circle x--\-y-=*J

at the point {x„, y^ is

which reduces to xxy + yy^ — 9.

A tangent to any curve is defined as a secant having two

points of intersection with the curve coincident.* \\y the

direction of the curve at any point is meant the direction of

the tangent to the curve at the point.

The circle x? 4- ?/- = i) at the point (.r,,, //,,) makes, with the

X-axis, tan~'( — " "
). At the points corresponding to .*; = U the

angles are tan-'( ^ )= loS^'oT' and tan-'f -^^- I — 41'' 2.';'.

Problems. — 1. Sliuw that -"'-" + ••'"=1
is tanj'ent to the ellipse

•|2 + p = l at(:r,„2,,).

2. Show that ^^-" - y'-'^ = 1 is tani^oiit to the hyperbola

orr «2

^2-ft^=l at(.ro, yo).

3. Show that yun - p{x + re) is tangent to the parabola if-
- '2 px at

('•0, 2/0) •

Ai;t. 17. — I'oix'is (JF Discontinuity

KXAMI'LK. — Plot
>f
= ^^-^^^

X — 'J

a; = -cc •••-;> -4 -,S -2-1 (» +1 -f-lj +:; + -| ... -f ^
y = 4- 1 ... 4-i +'j, +1 +\ -t -2 Tco +4 +l>i-... +1

* The secant definition of a tangent is due to Descartes and Fermat.

D



34 ANAL YTIC GEOMETRY

From X = to x- = + 2, y is negative and iiu-reases iiuleli-

nitely in numerical valne as x approaches 2. From x — + 2

to x — + cTj, y is positive and diminishes from + qk> to + 1.

y is negative, and decreases

numerically from — i to

wliile X passes from to

— 1. y is positive and in-

creases to + 1 from x = —1
to a; := — Oj . The curve

meets each of the two

straight lines x = 2 and

II
= 1 at two points infi-

nitely distant from the

origin.

The point corresponding

to X = 2 is a point of dis-

continnity of the curve.

J,',,;. 25.
I'^^Ji" if two abscissas are

taken, one less than 2,

tlie other greater than two, the difference between the corre-

sponding ordinates approaches infinity Avhen the difference

between the abscissas is indefinitely diminished, while the

definition of continuity requires that the difference between
two ordinates may be made less than any assignable quantity

by sufficiently diminishing the difference between tlie corre-

sponding abscissas.
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1/ lias two iiiiiiici'ically ('(pial iH'al values with opposiit; si^i's

fur every value of x. Tlie values of // iuereuse iudetiuitely

in numerical value as x in-

creases indeHnilely in iniuieri-

cal value. It now l)ec(Mnes

important to determine whether,

as was the case in Art. 17, a

strai.n'ht line can be drawn

whieh meets the eurve in two

points iniinitely distant from

the origin. The [xjints of in-

tt'rseetion of the straight line

// — iiix -f " iiiiil the locus of

y- — x- = 4 are found by making F"^- '-''•

these equations sinudtaneous. Eliminating y, there results the

equation in x, (?/r — 1) x' + 2 mnx + n- — 4 == 0. The problem

is so to determine m and n that this equation has two infinite

roots. An equation has two infinite roots when the coefficients

of the two highest powers of the unknown quantity are zero.*

Hence y = mx-\-n meets y"^ — x^ = 4: at two points infinitely

distant from the origin when nv — 1 = 0, 2 mn = 0, whence
7/1 = ± 1, n = 0. There are, therefore, two straight lines y = x

and ?/ = — X, each of which meets the locus of y- — x- = 4 at

two points infinitely distant from the origin. These lines are

called asymptotes to the curve.

\
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y =

AiiT. 19.— Maximum and Minimum Okdinatks

EXAMI'LK. l^lut // = X'' — 1 X -\- 7.

^-y,... -4 -3 -2 -1 +1 +1\ +2 +3.--+^

..-29 +1 +13 +13 +7 +1 -i +1 +13. ..+00

For .T = + 1, _v = + 1 ; fol-

ic =+ 2, ?/ = + 1 ; for a; = 11

y= — \. Hence between x=l
and a: — 2 the curve passes

below the X-axis, turns and

again passes above the X-axis.

At the turning point the ordi-

nate has a niinimuni value

;

that is, a value less than the

ordinates of the points of the

curve just before reaching and

just after passing the turning

point. The point generating

the curve moves upward from

a; = to .T = — 1, but some-

where between x =— 1 and

X — — 2 the point turns and

starts moving towards the

X-axis. At this turning point the ordinate is a maximum;

that is, greater than the ordinates of the points next the turn-

ing point on either side.

To determine the exact position of the turning points, let x'

be the abscissa, ?/' the ordinate of the turning point. Let h

be a very small quantity, y, the value of y corresponding to

X = x' ± h. Then ?/i
- ?/' must be positive when y' is a mini-

mum, negative when >/' is a maximum. Now

,/, -y' = (3 x' - 7) ( ± //) + .'5 -v ( ± J'Y + ( ± /')'•

h may be taken so small that the lowest power of h deter-
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mines the si!j,ii of //,
— //'.* //,

— //' (-an tlicrciore have the same

sign for ± h only when the coefficient of the lirst power of h

vanishes. This gives 3 x*^— 7= 0, whence x = ± V^. x = + V|,

rendering y^ — y' positive for ± li, corresponds to a minimum

ordinate; a; = — V|, rendering //i
— ,v' negative for ± //, corre-

sponds to a maximum ordinate. _
ANhen x = + V|, .'/ = 7 - V" V^I = - .2 ;

wlien x = - Vf,

y^7 +i^V21 = U.2.t

The values of a; which make // — are the roots of the ctpui-

tion ur' — 7 .f + 7 = 0. These values of x aiv. tlie abscissas of

the points wliere the locus of y = x^ — 7x + 7 intersects the

X-axis. X' — 7 .« + 7 = 0, therefore, has two roots between

-|- 1 and -f 'J, and a negative root between — ."> and — 4.

AUT. 20. I'olXTS OK IXFLECTIOX

ExAMi'LE. — Plot y + x-y — x = 0. Here //
—

X ^-cc 3 - 2 - 1 +1 +2 + 3 ... -f X)

If (x, y) is a point of the locus, (— x,— y) is also a point of

the locus. Hence the origin is a center of symmetry of the

locus. A line may be drawn through the origin intersecting

the curve in the symmetrical points /-• and P'. If this line is

* Let s = ah^ + hh^ + civ' + (IW' + ••• be an infinite scries with finite

coefficients, and let li be greater numerically than the largest of the co-

efficients b, c, <1, ••-. Tlien hh + eh- + dh^ + ••• < /t — and
\ — h

s = h\a + hh + '•//•!
-h ,1h^ ...) = /(,3(rt i ^1), when A<h — •

1 — ft

When h is indefinitely diminished, h —'-— diminishes indefinitely. Con-
1 — h

sequently A becomes less than the finite quantity a, and s has the sign

of a/i*.

t This method of examining fur maxima and minima was invented by

Fermat (1590-l(iG;3).
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Y

turned about xi until P coincides with A, F' must also coincide

with A. The line through A now becomes a tangent to the

curve, but this tangent intersects the curve. From the figure

it is seen that the coincidence of three points of intersection

Y_^

at the point of tangency, and the consequent intersection of the

curve by the tangent, is caused by the fact that at the origin

the curve changes from concave up to convex up. Such a point

of the curve is called a point of inflection.

To find the analytic condition which determines a point of

inflection, let (a-,,, yo) be any point of // + x'-i/ — x = 0. The

coordinates of any point on a line through (.i-,„ ?/„) are

X — Xq + d cos a, !i
= //„ + d sin a. The points of intersection

of line and curve correspond to the values of d satisfying

the equation

O/o + -V^/o — -^'o) + (sin « — cos « + 2 cos a a;,?/,, + sin a • .r,,^) d

-f (cos^ a •
?/o^ + 2 sin a cos a • x^y) d- + cos" a sin a • d'^ — 0.

The first term of this equation vanishes by hypothesis, and if

the coefticients of d and d- also vanish, the straight line and

curve have three coincident points of intersection at (Xf,, ?/o)-

The simultaneous vanishing of the coefticients of d and d'^

requires that the equations

sin a — cos a -\- 2 cos a • aVi,'/o + sin a • xj^ —

and cos- « • %- + 2 sin a cos a .r,, =

determine the same value for tan «. This gives the equation

l-2av/„
.

; reducing to ^/^)
— o x^fi/^ + 2 .(\, = 0, which to-



PLOTTING OF ALGEURAKJ EQUATIONS 81)

gcther with //„- + x^{y„ — a;o = determines the three puiuts of

iutiection (0, 0), (V3, ^V3), (- V3, - \Vo).

Art. 21. — Diametukj Mictuod of Tlotting Equations

ExAMi'LE. — riot

y- — 2 xy -\-'S.xr — Hj x — 0.

1 1 ere y — x ± Vl(J x — 2 x'.

Draw the strai.^•ht line y = x.

Adding to and subtracting from

the ordinate of this line, corre-

sponding to any abscissa x, the

cpiantity VlO x — 2 x^, the corre-

sponding ordinates of the re-

qnired locus are obtained.

This locus intersects the line

y = X when VlGx—2xr=0, that

is when x = and x = 8. y is

real only for values of x from

to 8. The curve intersects the

X-axis when x = VlG x — 2 a?,
'''"^- '"'*•

that is Avhen x=^. Points of the curve are located by the

table,

x = +1 +2 +3
Vl6 x-2 x' = ±Vl4 ±2V6 ±V3()

+ 4 -1-5 +6 +7 +8

±4V2 ±V30 ±2VG ±VT4
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2. To iind wlu've the locus of an equation intersects the

X-axis, pkice y = in the equation and solve for x ; to find

where the locus intersects the F-axis, place x= and solve

for y.

3. The abscissas of the points of intersection of the locus of

ij = f{x) with the X-axis are the real roots of the equation

4. If the equation contains only even powers of y, the locus

is symmetrical with respect to the X-axis ; if the equation con-

tains only even powers of x, the locus is symmetrical with

respect to the Y-axis. The origin is a center of symmetry of

the locus when (— x, — y) satisfies the equation, because {x, y)

does.

5. Tlie points of intersection of the straight line

2/ — ^u^ tan«(:« — a-o)

with the locus of J\x, ?/)= are the points {x, y) correspond-

ing to the values of d Avhich are the roots of the equation

obtained by substituting x = x^ + d cos a, y — y^-}- d sin a in

f{x, y)— 0. The number of points of intersection is equal to

the degree of the equation, and is called the order of the curve.

6. The distances from any point {xq, y^ to the points of in-

tersection of the straight line y — ?/„ = tan a(x. — x^ Avith the

locus of fix, y)—0 are the values of d which are the roots

of the equation obtained by substituting x = .Vo -f- d cos a,

y — ?/,, + d sin a in J\x, y) — 0.

7. The tangent to /(.r, y)= at (x*,,, ?/„) in the locus is

found by substituting x= .»„ + d cos«, y = ?/„ + d sin a in

/(.t, _?/)= 0, equating to zero the coefficient of the first power

of d, and solving for tan a. This value of tan u makes

y-y, = timu(x- x^)

the equation of the tangent tof(x, _?/)= at (xq, y^).

8. If the curve f(x, y)= has infinite branches, the values

of 'tn. and u found by substituting mx + n for // in the equation



PLOTTING OF ALGEIiUAW EQUATIONS 41

f{x,ij)=0, and tNiuating to zero the coetticients of tlio two
liighest powers of x in the resultini^ equation, deteruiine tlie

line // = mx -\- u which meets the curve at two points at in-

finity; that is, the asymptote.

9. To examine the locus of ?/=/(.»•) for maximum and mini-

mum ordinates form /(.r ± //) — /(.!•). Equate to zero the co-

efficient of the first power of h, and solve for x. The values of

X which make the coefficient of the second power of h positive

correspond to minimum, those which make this coefficient

negative correspond to maximum ordinates.

10. To determine the points of inflection of f(x, y)= 0, sul)-

stitute X — .To -f d cos a, y = yQ-\-d sin cc in f(x, y)= 0. In the

resulting equation place the coefficients of d and d'- ecpial to

zero, and equate the values of tan a obtained from these equa-

tions. The resulting equation, together with the equation of

the curve, determines the points of inflection.

Problems.— I'lot tlie numerical algebraic equations:

1. 2x + :],j~7. 5. (X- 2)0/ + 2)= 7. 10. yi = -\Ox.

2 ^^U=\ 6- '^ + y'' = -^- 11- ^ ''- + ^>J^ = 36.'48'
7. a:-2-?/2 = 25. 12. 4x^-9>/ = m.

3- a-// = 4. 8. X- - ?/2 = - 25. 13. 4 x- - ?/2 = - 30.

4. (x-2)ij = [,. 9. if=z\Ox. 14. ?/-i = 10.C-X2.

15. 2/- = X- - 10 r. 26. ?/ = x- - 4 .c + 4.

16. x^ + 10 ./•// + >/i ^ 25. 27. 2/2 = (a: + 2) (X - 3).

17. .t2 + 10 x)/ + >/ + 25 = 0. 28. 2/2 = x2 - 2 x - 8.

18. 2/"^ = 8 x2 - x^ + 7. 29. 2/" = x2 - 4 x + 4.

19. x2 + 2 xy + y2 ^ 25. 30. 2/ = (x - 1 )(x - 2) (x - 3)

.

20. .r2 + 10 .r.v + f = 0. 31. y^ = x'^ - G x"- + \\ x - G.

21. I/- = .rt - x2. 32. y = x* - 5 x:- + 4.

22. 2/2 = x2 - X*. 33. 2/- = x« - 5 x2 + 4.

23. 2/- = x^ - x\ 34. y = x» -I- 2x3 - 3x2 - 4 X -I- 4.

24. 2/ = (x + 2)(x-3).
35. y=_^L_

2/ = x2-2x-8. -^ l-x'J
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2x-l
3 X + 5'

y + 5

3 - x'

4-3x
5x — 6

39. ?/ - 2 x?/ - 2 = 0.

40. y- + 2 x^ + 3 x"^ - 4 X = 0.

41. m2 = x3-2x-^-8x.

36. y

37. y

38. 2/

42. ?/ = x3-9x2 + 24x + 3.

43. ?/=(3x-5)(2x + 9).

44. 2/'i = x3 - 2 x2.

45. 2/2 + 2x2/- 3x2 + 4x = 0.

46. 2/^ -2x2/ + x2 + X = 0.

47. 2/^ + 4 X2/ + 4 x2 - 4 = 0.

48. 2/"-^ - 2 X2/ + 2 X'- - 2 X = 0.

49. 2/--2x2/ + 2x2+22/ + x + 3 = 0.

50. 2/" - 2 X2/ + x- - 4 2/ + X + 4 = 0.

1.
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Evaluating for a-o = 2.07, |/n = 4.48, tan a' = 1.10, tan a = — .47 ; whence

a' = 48° 4', a = 154° 50', ami the anglo between the curves is 104° 52'.

2. 2 X + 3 y = 5, ?/ =
i

.'c + 3. 8. /- + ;/- = 25, ij- = 10 x - x^.

3. y = 3 X + 5, .T^ + !/-^ = 25. 9. 3 .c^ + 2 y-^ = 7, ?/ - 2 x = 0.

4. X- + J/'- = 9, */2 = 10 X — x^. 10. y- = 4 X, 2/
— X = 0.

5. 2/'^ = 10 X, 4 x2 - y^ = ;](!. 11. 2 x^ - r' = 14, x^ + 2/^ = 4.

6. 2 x- — IJ- = 14, X- + y'^ = !). 12. x- -f ?/- = 25, x'^ — )/- = 4.

7. >/ = x^ — 7 X + 7, ?/ — X = 0.

Solve the following equations graphically

1. x2 — X - (5 = 0. Plot // = X- and y = x + C> to the same axes. For

the points of intersection of the loci x- = x + d ; that is, x- — x — C = 0.

Hence the abscissas of the jioints of

intersection of y = x^ and y — x +
are the real roots of x- — x — = 0.

For all quadratic equations,

X- + ax + h = 0,

the curve ;/ = x- is the same, and the

roots are the abscissas of the points

of intersection of the straight line

y = — ax — h with this curve.

In like manner the real roots of

any trinomial equation x" + rtx4-/;=0

ai-e the abscissas of the points of in-

tersection of y=x" and y + ax-\-b=0.

2. x--3x + 2 = 0.

3. x"- + 5 X + --

4. .r2 -4=0.

5. :,•;:_ Ox -10:

0.

0.
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Sketch the following literal algebraic ecjuations

:

?/2 = a;31. ?/2 _ 3.3 _ (5 _ c)x^ — bcx. Here y — ± vx(x — 6) (x + c). Unless
numerical values are assigned to b and c, it is impossible to plot the equa-

tion by the location of points. How-
ever, the general nature of the locus may
be determined by discussing the equa-

tion. The A'-axis is an axis of sym-

metry, the origin a point of the locus.

For < X < 6, y ifi imaginary ; when
X = b, y = ; for x > b, y has two nu-

merically equal real values with op-

posite signs, increasing indefinitely in

numerical value with x. For > x > - r,

y has two numerically equal values with

opposite signs ; for x = — c, y = ; for

^ < — <"» 2/ is imaginary. Sketching a

curve in accordance witli these condi-

tions, a locus of the nature shown in the

figure is obtained.ili
= 1.

X2

Pig. 32.

= 1.

3. ?/ = ax. 6.

4. ?/ = ax + b. 7.

»/- = -J, px.

X- + y- — a-.

b-^

b-^

= 1.

13.



CHAPTER IV

PLOTTING OF TRANSCENDENTAL EQUATIONS

Art. 23. — Elemkntauv Tiianscendkntal Fltnctions

Transoendental e(]u<ati()iis are e(iuat.it»ns involvinj;- ti'aiiscon-

dental functions.

The elementary transcendental functions are the exiioiion-

tial, logarithmic, circular or trigonometric, and inverse circular

functions.

The expression of ti-anscendental Cnnctioiis by means of tlu'

fundamental operations of algehra is possil)k^ only hy means

of infinite series.

AliT. 24. ExroXKXTIAL and LoOAUrTHMIC FirXCTIONS

The general type of the exponential function is y = h-a",

where a is called the base of the exponential function and is

always positive.

To plot the exponential func-

tion numerically, suppose /> = 1

,

c = 1, (( = U. Then y = 2'' and

a;= — CO 4 — 3 — 2 —

1

11= 0... i, I. \ I

1 2 3 4...r>D.

1 2 4 S 1 ('.... X.

Vov all values of a the locus

of y = a' contains the point (0, J)

and indefinitely approaches the

X-axis. Increasing the value of

a causes the locus to recede more

45

_ Y _

I

, ^

—



46 ANALYTIC GEOMETRY

rapidly from the X-axis for x > 0, and to approach the X-axis

more rapidly for x<(). When « = !, the locus is a straight

line parallel to the X-axis. When a < 1, the locus approaches

the X-axis for x>l, and recedes from the X-axis for x < 0.

When c is not unity the function y = a" may be Avritten

y =(cfy, and the base of the exponential function becomes a".

When b differs from unity, each ordinate of y = h - a" is the

corresponding ordinate of ?/ = a" multiplied by b.

To plot the exponential function y = b • a" graphically, com-

pute ?/n and ?/i , the values of y corresponding to x = and

X = a'l, where x^ is any number not zero. Adopt the following

notation for corresponding values of x and y.

x= 4a-, -'Sxi -2x, -x, x, 2x, ?.x, 4.x,---

y = — 2/- 4 Vz y-2 y-i ih Vx y-2 y-s yi----

Then •lsl = l^ = '!h^'!h = yi=.h=... ««,. On two intersect-

y 2 y-i 2/o yi v-i .Vs

ing straight lines take OA — yo, OB = yi. Join .1 and B,

B

x./ \A.

O K A C E C.

Fin. .'54.

draw BC making angle OBC = angle OAB. Then draw CD,

DE, EF, •••, parallel to AB and BC alternately ;
AH, IIK, KL,

• ••, parallel to BC and AB alternately. From similar triangles

0K_ OII^ OA ^OB^OC^OD^ OE
()L~ 0K~ OII~ OA OB OC 01)

Hence, if 0.4 = ?/o, OB = yi, it follows that OL = y_:„ OK
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= V .,. on = i/^x, OC — y.2, OD = II.^ ;
that is, the ordinates cor-

resi)onding iox = — ox^, — 2:Ci, — x^, 2a-,, Sifj become known

and the points of the curve can be located.

The logarithmic function ex = log„ {by) is equivalent to tlie

exponential function ?/ = a". When y = log a.- is plotted, tlie

logarithm of the product of any two numbers is the sum of

the ordinates of the abscissas which represent the nund)ers,

and the product itself is the aV)Scissa corresponding to this

sum of the ordinates.

The slide rule is based on this principle. In the slide rule

the ordinates of the logarithmic curve are laid off on a straight

line from a common point and the ends marked by the corre-

sponding abscissas.

Art. 25.

—

Circular and Inverse Circular Functions

Ty\ definition, am AOP PD
OP

P'D'

OP'

angle ^lOP in circular measure is

Hence, if the radius OA' is the linear

unit, the line P'D' is a geometric rep-

resentative of sinvlOP, the arc A'P'

a geometric representative of the

angle AOP. The measure of the

angle ylOPis 1 when arc AP= OP;

that is, the unit of circular measure

is the angle at the center which in-

tercej^ts on the circumference an arc

equal to the radius. The unit of

circular measure is callcil the radi

of four riglit angles, or .".r.0°, is
'

and the value

arc AP ai

of the

c.I'P'

OP OP

radian is ecpiivalent to
360''

r°.3 -.
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Calling angles generated by the anti-clockwise motion of

OA positive, angles generated by the clockwise motion of OA
negative, there corresponds to every value of the abstract num-

ber X a determinate angle.

Unless otherwise specified, angles are expressed in circular

measure. When an arc is spoken of without qualiiieation, an

arc to radius unity is always understood.

In tables of trigonometric functions angles are generally ex-

pressed in degrees. Hence, to plot y = sin x numerically,

assign arbitrary values to x, find the valne of the correspond-

ing angle in degrees, and take from the tables the numerical

value of sin x.
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?/= Wli 1 W'2 -^V2 -1

jV2 1 jV2 -|V2 -1 -^-V2

^Vii

Y

lAtbz::

To plot ^ = sin X grapliically, draw a circle witli radius unity,

divide the circiunfereuce into any number of equal parts, and
placing the origin of arcs at the origin of coordinates, roll the

circle along the X-axis, marking on the A'-axis the points of

division of the circumference 0, 1, 2, .'5, 4, 5, (>, •••. Througli

the points of division of the circumference draw perpendicu-

lars to the diameter through the origin of arcs 00, 11, 22, «*>.'»,

44, 55, GG, ••. On the perpendiculars to the X-axis at the

points 0, 1, 2, o, 4, 5, G, •••, lay off the distances 00, 11, 22, ',y,\,

44, 55, GG, •••, respectivt'ly. lu this inauucr any nundjer of

points of y = sin x may be located.
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On account of the perioilicity of sin.T, the locus of ?/ = sin x

consists of an infinite number of repetitions of the curve

obtained from a; = to a; = 2 tt. The locus has maximum or-

dinates y — -{-1 corresponding to x = (4n + 1)^, minimum

ordinates y = — 1 corresponding to x = (4 m + 3)^, where n is

any integer. The locus crosses the a>axis when x = mr.

To plot y—o sin a.", it is only necessary

to multiply each ordinate oi y — sin x

by 3. This is effected graphically by

drawing a pair of concentric circles, one

with radius luiity, the other with radius

3. Since OP' is the linear unit, F'D' rep-

resents sin X, and PD represents 3 sin x,

*"^' '^^'

while X is represented by the arc A'P'.

To plot v/=3 sin a-+sin (2 x), plot ?/i=3 sin a; and ?/2=sin (2 a-)

on the same axes. The ordinate of ?/ = 3 sin x + sin (2 .}•) cor-
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time is t = -— Tlie construction of the curve is indicated in

the iigure. The jtrojcction of unirorni motion in the circum-

I'ci'ent'e of a circle on a diamctei' is caUcd harmoiuc motion.

f=2 t = ]

1=0

!J
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I\()D - P.,OD = ^1 - e.,. The ijarallelogram on 01\ and 01\
for different values of t is the same j)arallelogram in different

positions. This parallelogram has the same angular motion

as OPi and 01\. Now y^ = PiAj 2/2 = P^D.,, hence

p/;-PiA + P.A = 2/i + 2/..

and the sum of the sine-functions corresponding to the circular

motions of Pi and P., is the sine-function corresponding to the

circular motion of P. The resultant sine-function has the same

period as the component sine-functions, its amplitude is OP,

its epoch angle the angle POD corresponding to the position

of P for t = 0. The resultant sine-function is y= a s\n{wt-\-6),

where a^ = a^^ + a./ -\-2 ttia^ cos {61 — 62),

a
I
sin $1 + €(,2 sin O2 *

cij cos 61 + a.^ cos 62

(1) ij = sm~^x is equivalent to x

tan 6

.

is equivalent to x sin ^; (o) y = sin
o

sin y ; (2) // = 3 sin~' x

is equivalent to

a; = 3 sin:;; (4) /y = 3 sii is equivalent to x — 2 sin

graphic interpretation of ccpuitions (1), (2), (3), (4) is shown
in figures (a), (b), (c), (d), which also indicate the nu^nncr of

plotting the equations graphically.

* A jointed paralk'lograin is used for conipoundiiig harmonic motions

of different periods in Lord Kelvin's tidal clock.
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The reiiuiining circular and inverse circular fuuc^tions are

l)k)ttcd in a manner entirely analogous to that employed in

l)lotting y = s'lnx and y = sin"' x.

Problems. — riot 1. )j = 2^. 2. */ = lO-'. 3. y=(\y. 4. y=(.l)^

5. i/
= 2-^. 6. .v= 5-2^. 7. y=3^\ 8. .v=:e^* Q. y= e-\ 10. ij = \(e^+ e-^).

This function is called the hyperbolic cosine, and is written y = cosh a;.

11. y — - (e^ + e-^^) or y = c cosh x. This is the equation of the catenary.t

the form assumed by a perfectly flexible, homogeneous chain whose ends

are fastened cat two points not in the same vertical.

12. y — I (e-^ — e""^). This is the hyperbolic sine, and is written sinh r.

13. y = K
14. y = logiox.

19. ;K-2 = logi„(y + 5).

20. r + 5 = logio (^ - 2).

1. y = logo X.
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46. 2 M = cos-i X. -r b2. x — 2 — shr^ y.
50. w = 3 cos-i -•

47. 2/ = J
taii-i x. 3 53. x+3 = siu-i (i/-2).

48. 2/ = sec-i(x-3). ^^ y = 5sin-i?.
^*- ^ = cos-i (?/ - 1).

49. ?/ = 2 + vers-i X. 4 55. 2/+2=:cos-i(a;-2).

56. y = sill (] nt). b1. y = sin (] ivt + \ v).

58. y — sill (.] wt + 2 t) + .siii(^ tt^ + v).

59. ;/ = sin (I nt) + sin (} irt + ^ tt).

60. y = sin (|: 7r( + 1 tt) + sin {\ -ret + i tt).

The elementary transcendental functions are of great impor-

tance in mathematical physics. For instance, if a steady

electric current /flows through a circuit, the strength i of the

current t seconds after the removal of the electromotive force

is given by the exponential function i= le ^, where R and L
are constants of the circuit.

The quantity of light that penetrates different thicknesses of

glass is a logarithmic function of the thickness.

The sine-function is the element by whose composition any

single-valued periodic function may be formed. Vibratory

motion and wave motion are periodic. The sine-function or,

as it is also called, the simple harmonic function, thus becomes

of fundamental importance in the mathematical treatment of

heat, light, sound, and electricity.

Art. 26.— Cycloids

A circle rolls along a fixed straight line. The curve traced

by a point fixed in the circumference of the circle is called a

cycloid.* The fixed line is called the base, the point whosr

distance from the base is the diameter of the generating circli^

the vertex, the perpendicular from the vertex to the base th<'

* Curves generated by a point fixed in the plane of a curve which \\A[a

along some fixed curve are called by the general name "roulettes.''

Cycloids are a special class of roulettes.
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mS of tlicryi'loiil. The courtliiiates of any inuiitof the cycloid

ay be expressed as trausceudental i'uiictions cd' a variable

angle.

Take the base ol' the cyck)id as X-axis, the perpendicular to

the base where the cycloid meets the base as I'-axis, and call the

angle made by the radius of the generating circle to the tracing

point with the vertical diameter 6. l>y the nature of the

cycloid AK= arc PK = rO, y = PD = OK - OL ^ r - r cos d,

X = AD = AK— DK=^ i-e — r sin 9. Kence (1) x = rO - r sin 0,

y = )• — r cos 9 for every value of 9 determine a point of the

cycloid. The equation of the cycloid between x and y is

obtained either directly from the figure,

X = AK — DK — arc PK — PL = r vers"'*— Vli ni
r

or by eliminating 9 between ecpuitions (1),

T

V
.

V-5 ry - y-,

hence Vi/ry

Now r vers~^-^ has for the same value of y an infinite number

of values differing by 2tt, and V2ry — // is a two-valued func-

tion which is real only for values of y from to -f 2 r. Hence
the equation determines an infinite number of values of x for

every value of y between and + 2 r. This agrees with the

nature of the curve as determined by its generation.
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By observing that tlie center of the generating circle is

always in the line parallel to the base at a distance equal to

the radius of the generating circle, the generating circle may
readily be placed in position for locating any point of the

cycloid. At the instant the point P is being located the

generating circle is revolving about K, hence the generating

point P tends at that instant to move in the circumference of

a circle whose center is A' and radius the chord KP. The tan-

gent to the cycloid at P is therefore the perpendicular to the

chord KP at P, that is the tangent is the chord PII of the

generating circle.*

The perpendicular to the tangent to a curve at the point of

tangency is called the normal to the

curve at that point. Hence the chord

KP is the normal to the cycloid at P.

Take the axis of the cycloid as X-axis,

the tangent at the vertex as F-axis.

By the nature of the cycloid

3//ir=arcP/i,

MN— semi-circumference KPH.

X =AD = HL=OH-OL = r-r cos 0,

7j = PD = LD+PL=(MN-Miq-\-PL
= arc IIP + PL= rO + r sin 0.

That is,

(1) X:

y rd -\- r sin i

determine for every value of ^ a point of the cycloid. The

equation between x and y is found either directly from the

figure,

y =z LD + PL = r vers"' - + V2 rx — x-
;

This method of drawing a tangent to the cycloid is due to Descartes.
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or by elimiiiatini;- 6 between eiiuations (1),

^=:cos-/l --")=: vers-' ^,

.6^^V2'

hence y=r vers"' - + V2 rx
r

Art. 27.— Prolate and Curtate Cycloids

When the genercating point instead of being on the eircuni-

ference is a point fixed in the pkme of the rolling circle, the

curve generated is called the prolate cycloid when the point is

within the circumference, the curtate cycloid when the point

is without the circumference. Let a be the distance from the

center to the generating point. From the figures the equations

of these curves are readily seen to be

x = r6 — a sin 0, y = r — a cos 6.

Fio. 40

* If the cycloid is concave up and the tanfjcnt at. the vertex horizontal,

the time required by a particle sliding down the cycloid, suiJjiosed friction-

less, to reach the vertex is independent of the starting point. On account

of this property, discovered by Huygens in 1G73, the cycloid is called the

tautochrone. The frictionless curve along which a body must slide to

pass from one point to another in the shortest time is a cycloid. On
account of this property, discovered by John Bernoulli in 1G9G, the cycloid

is called the brachistochrone.
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Art. Epicycloids and Hypocycloids

If a circle rolls along the circumference of a fixed circle, the

curve generated by a point fixed in

the circumference of the rolling

circle is called an epicycloid if the

circle rolls along the outside, an

hypocycloid if the circle rolls along

the inside of the circumference of

the fixed circle. By the nature of

Oi ~U D X the epicycloid arc HO = arc HP,

that is E-6^r-
(f>.

From the

figure X = AD = AL + DL
Fiu. 47. =(R + r)cos + r cos CPM.

... Ji + r. „ _

180°-:

Hence x = (R + r)cos PD = CL

R + r

CM

= (R + r)sin^ — r sin

By the nature of the hypocycloidR • 6

= r • <^, hence ^ = ^-6. x = AD
r

X = AL - PM
= (R - r)cos e- 7- cos CPM.

NowCPJ/=lSO°-</, + ^

R-

x=(R — r)cos 6 + r cos

180°

R-

Hence

PD = CL -CM = (R- r)s\n O-r sin

Epicycloids and hypocycloids are used in constructing gear teeth.
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AiiT. 29.— Involutk of Cikcli':

A string whose length is the circumference of a circle is

wound about the circumference. One end is fastened at and

the string unwound. If the string is kept stretched, its free

end traces a curve which is called the involute of the circle.

From the nature of the involute, IIP is tangent to the fixed

circle and equals the arc HO, which equals Ji$.

X = AD = AL + KP = 11 cos + BO sin 6,

y=PD= IIL - IIK = n sin 6 - 116 cos 6*

* The invohite is also used in cnnstructing gear teeth.



CHAPTER V

TEANSrOEMATION Or COOKDINATES

Art. 30.— Transformation to Parallel Axes

Let P be any point in the plane. Keferred to the axes

X, Y the point P is represented by {x, y) ;
referred to the

parallel axes Xj, Yi, the point

P is represented by (x^, y-^. Let

the origin A^ be {m, n) when

referred to the axes X, Y.

—Xi Prom the figure x = m + x^,

y = n -{- yi. Since (x, y) and

—X (xi, ;Vi) represent the same point

P, if f{x, ?/) = is the equation

of a certain geometric figure

when interpreted with refer-

ence to the axes X, Y, f(m + Xi, n -|-
?/i)
= is the equation of

the same geometric figure when interpreted with reference to

the axes Xj, Y^.

Example. — The eqiiation of the

circle whose radius is 5, center (2, 3)

is (1) (a; - 2)2 + (y - 3)^ = 25. Draw
a set of axes Xj, Yi parallel to X,

Y through (2, 3). Then x = 2 + x„

y = ?y -\- ?/,. Substituting in equation

(1), there results (2) x^- + y,^ = 25.

Notice that the equation of a geo-

metric figure depends on the position

of the geometric figure with respect

to the axes.

GO
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AUT. 31. — FUOM KeCTANGULAU AxKS to JiK( TAN(i[M.AIl

Let (x, y) represent any point in the plane referred to the

axes X, F; (x„ y^ the same point referred to the axes X,, \\,

where Xj, Yi are obtained by turning A', Y about A througli

the angle a. Now

x=AD = An-KD'
= x'l cos a —

.'/i
sin a,

y=. P1) = D'H+PK
— .Xisin a + yi cos a.

Since (.x*, .7) and (.i-,, yO rep-

resent the same point 7*,

/(x, ?/)= interpreted on the

A", Y axes and r><i. 52.

/(a'l cos a — ?/i
sin «, a;, sin « + ?/, cos «) =

interpreted on the Xj, Fj axes represent the same geometric

figure.

Example. — y = a- + 4 is the equation of a straight line. To

find a set of rectangular axes, the origin remaining the same, to

which when this line is referred

its equation takes the form yi=n,

substitute in the given equation

X = Xi cos a — yi sin a,

y = Xi sin a + y^ cos a.

There results

Xy (sin a — cos«)

+ ?/i
(sin a + cos «) = 4,

and this equation takes the re-

quired form when
sin a — cos a = 0,

that is, when a = 45°. Substituting this value of a, the trans-

formed equation becomes ?/, = 2 V2.
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Art. 32.— Oblique Axes

Hitherto the axes of reference have been perpendicular to

each other. The position of a point in the plane can be equally

well determined when the axes are oblique. The ordinate of the

point F referred to the

/ / / oblique axes X, Yis the

distance and direction

of the point from the

X-axis, the distance

being measured on a

parallel to the I''-axis,

the side of the X-axis

on which the point lies

being indicated b}^ the

algebraic sign prefixed
" '"' ""'

to the number express-

ing this distance. Similarly the abscissa of the point P is the

distance and direction of the point from the F-axis, the dis-

tance being measured on a parallel to the X-axis, the alge-

braic sign prefixed to this distance denoting on what side of

the F-axis the point lies.

Problems. — Tlie angle between the oblique axes being 45'

:

1. Locate the points (3, - 2); (- 5, 4); (0, 8); (- 4, - 7);
(2i, - 3);

Observe that the geometric

figure represented by an equa-

tion depends on the system of

coordinates used in plotting the

equation.

4. Find the equation of a

straight line referred to oblique

axes including an angle /3. The

method used to find the equation

of a straiafht lino referred to

(
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rcctancjular axes sliows tliat the equation of a strai,i,'lit line referred to

oblique axes is y = vix + «, where in —

of the line on the I'-axis.

sni (/S — a)
and n is the intercept

5. Show that V (x' - x")'^ + (y' - y")'^ + 2(3;' - x") {y' - y") cos /3 is

the distance between the points (z', ?/'), (x", y") when the angle between

the axes is /3.

6. Find the equation of the circle whose radius is Ji, center (m, 7i),

when the angle between the axes is /3.

7. Show that double the area of the triangle whose vertices are

(3^1, yO, (3-2, !/2), (a^s, 2/3)

is {yi(^3 - X2) + yo(xi - T:i) + y3(x-2 - xi)}sin /3.

AuT. 33. — From Rectangular Axes to Oi-.lique

It is sometimes desirable to find tlie equation of a £;eometric

figure referred to oblique axes when the equation of this figure

referred to rectangular axes is

known. This manner of ob-

taining the equation of a figure

referred to oblique axes is fre-

quently a simpler problem than

to obtain the equation directly.

To accomplish the transformation,

the rectangular coordinates of a

point must be expressed in terms

of the oblifjue coordinates of the Fio. 5g.

same point. From the figure

a: = AD = AII+ D'K= .r, cos a + ,v, cos a',

y = PD= D'II+ PK= .r, sin a + //, sin u'.

ExAMi'LE. — To find the equation of the h_viHTl)i)l;i rcfcvvcd

to its asymptotes from the common C(piatit)n of the hyperbola,

x^ _ jf _ 1
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b
The asymptotes of the hyperbola, y

of the rectangle on the axes. Hence

b

± -X, are the diagonals
a

cos a —
Va- + b-

and the transformation for-

mulas become

"
(.-^-i + z/O,

Va^ + b'

b

Va^ + 6-

Substituting in the common
equation of the hyperbola

and reducing, a\y^ = '-,

4
the equation of the hyperbola referred to its asymptotes.

The formulas for passing from oblique axes to rectangular,

'y the origin remaining the same, are

x = AD = AH-D'K

_ y, sin (/3 — a) _ ?/, cos ((3 — a)

sin/? sin/3

= PD = D'll + PK

_ Xi sin a ?/i cos n

sin /3 sin (3

Art. 34.— General Transformation

The general formulas for transforming from one set of recti-

linear axes to another set of rectilinear axes, the origin of the

second set when referred to the first set being (m, n), are
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x = AD=An + A/r-\-J)'h',

_ .r I s i 11 (/3 - u) //i sill {13 -a')
-'"+ sm(3 ^ sm(3 '

2/ = PL* = .l,7t* + D'T + I'K,

.r, sill u
, Vi sill a'

From tliesc L;eiieral formulas all tlie ijrecediiiy formulas may
bo derived by substituting for ?/;, v, fS, a, a' tlieir values in

each special case. However, if it is observed that in every

case the figure used in deriving the transformation formulas

is constructed by drawing the coordinates of any ])oint P
referred to the original axes, and the coordinates of the same

point referred to the new axes, then through the foot of the

new ordinate parallels to the original axes, it is simpler to

derive these formulas directly from the figure, whenever they

are needed.

Art. 35. — Thk ruouLEM of Tiia\sfoi;i\i.\tion

An examination of the transformation formulas shows that

the values of the rectilinear coordinates of any point in terms

of any other rectilinear coordinates of the same ])oint are of

the first degree. Hence transformation from one set of recti-
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linear coordinates to auotlier rectilinear set does not change

the degree of the equation of the geometric figure.

Two classes of problems are solved by the transformation of

coordinates

:

I. Having given the equation of a geometric figure referred

to one set of axes, to find the equation of the same geometric

figure referred to another set of axes.

II. Having given the equation of a geometric figure referred

to one set of axes, to find a second set of axes to which when

the geometric figure is referred its equation takes a required

form.

Problems. —Transform to parallel axes, given the coordinates of the

new origin referred to the original axes.

1. 2/ - 2 = 0(x + 5), origin (- 5, 2).

2. (x - 3) (?/ - 4) = 5, origin (3, 4).

3. y = 2x + 5, origin (0, 5).

4. a;2 + ?/2 4- 2 X + 4 ?/ = 4, origin ( - 1, - 2).

5. a;2 + 2/2 + fi »/ = 7, origin (0, - 3).

6. X- + 2/2 - G X = 16, origin (3, 0).

7. 2/^ + 4 2/
- G X = 4, origin (0, - 2).

8. 25(2/ + 4)2 + lC(x - 5)2 = 400, origin (5, - 4).

9. ,;2 + f. ^ 25, origin ( - 5, 0). ^^
^J
+ ?^ = 1, origin (0, - h).

10. x2 + 2/2 = 25, origin (0, - 5).
"' '''

11. x2 + 2/2 = 25, origin (-5, -5). '^- | + g = 1, origin (- a, - 6).

12. ^^t^ 1, origin (- a, 0). 15. ^-^- = 1, origin (a, 0).
a- 62 a^ h^

Transform from one rectangular set to a second rectangular set, the

second set being obtained by turning the first about the origin tlirough 45'^.

16. x2 + 2/- = 4. 18. y + x = 5. 21. y'^-3ry + x«,= 0.

17. x2 - 2/2 = 4. 19. 2/2 ^ jy _ a:2 = G. 22. ?/" + 3 ry - .r' = 0.

20. if' + 4 xy + x2 = 8.

Notice that to plot equations 21 and 22 directly requires tlie sohition of

a cubic equation, whereas the transformed equations are plotted by the

solution of a quadratic equation.
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In the following problems the first equation is the equation of a geo-

metric figure referred to rectangular axes. The origin of a parallel set of

axes is to be ftiuml to which when the geometric figure is ri'ferred its

equation is tlie second eiiuation given.

23. .'/ + 2 = 4(x - :J)
; y = -1 •^- 26. if - X- - lU x = ; x- - ij- = 25.

24. (.<• + 1) (// + 5) = 4 ; xij ^ 1. 27. U' - 1U(..: -|- 5) = ; >f = 10 x.

25. f + x^+ lOx=0; x:-+ y'=25. 28. if + x;^ + -i >j--2 x=l\ ; x- +f = YG.

In the following problems the first equation is tlu; equation of a geo-

metric figure referred to rectangular axes; find the inclination of a secoiul

set of rectangular axes to the given, origin remaining the same, to which

when the geometric figaire is referred its equation is the second eiiuation

given.

29. y = x + 4; y = 2V2.
^^

„o ^ 2n ,-2 4- y2 = 2:,. 32. ^ - 2g = 1 ;
:r//

30. y-

33. //' - 3 axy + .';' = ; y^

- y

3V2aa;'

d' 4- }i~

2x3

2x -|-;j\/2a

Construct the locus of tlie first etiuation in the following problems by

drawing tlie axes A'l, I'l and plotting the second eipiation.

34. 11-2 = log(x -f- ;:i) ; ?/i
= log Xi. 36. ?/ -f 3 == 2^ t •»

; y.^ = 2a.

35. 2/ = 3 sin(x + 5); 2/1 = 3 sin Xi. 37. y + 5 = tau(x - 3); yi = tan Xi.

1, obtain
3.2 ,,2

From the common eciuation of the hyperbola,-— — --

the equation of the hyperbola referred to oblique axes through the center,

1,2

such that tan a tan a' =—
a-

The transformation formulas

are x = Xi cosa -f- 2/1 cosa',

y = Xisina -1- yi sin a'

;

the transformed equation

/cos^a sin-a\ ,

[—2 ^p'
+ 2f

"°^°' sm g sm g'

The condition tan a tan a

the equation of the hyperbola referred to the oblique axes becomes

Fic. f>i».

renders the coefficient of Xij/i zero, and
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.siii-c

l.'/r = 1-

Since only values uf a and a' less than 180° need be considered, the con-

dition tan a tan a' = - shows that a and a' are either both less than 90° or
«"

h b
both greater than 90", and that if tana <-, tana' >-. Since the equa-

tions of the asymptotes of the hyperbola are y = ±~x, it follows that if

the Xi-axis intersects the hyperbola, the Ti-axis cannot intersect it.

Calling the intercepts of the hyperbola on the Xi- and I'l-axis respectively

ai and biV— 1, the equation referred to the oblique axes becomes

39. From the common equation of the ellipse, ~ -|- - = 1, obtain the
62

62

P P
(m, n) is y=~(x + 7n), tano'=—

.

n n

equation of the ellipse referred to oblique axes such that tan a tan a'

40. From the common equation of the parabola y^ = 2px obtain the

equation of the parabola referred to oblique axes, origin (m, n) on the

parabola, the AVaxis parallel to the axis of the parabola, the JVaxis

tangent to the parabola.

n- = 2 pm, a = 0, and, since the equation of the tangent to y"^ = 2px at

The transformation formulas be-

come X = m + Xi + ?/i cos a', ?/ = n + ?/i sin a', and the transformed equa-
rfl -|- /i'.2

tion reduces to yi^ = 2 .ti, or yi~ = 2(p + 2 m)xi.

41. To determine a set of oblique axes, with the origin at the center, to

which when the ellipse is referred, its equation has the same form as the

common equation of the ellipse -^ + ra = 1-

The substitution of

X = a:i cosa + ?/iC0Sa',

2/ = Xi sin a -1- yi sin a'

transforms the equation -2+72= 1

into

/Cos2a

V rt2

+
ft2
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'I'lio problem requires thai the coefficient of Xij/i bo zero, hence

tan a tan a.' = '-

d-

Tlie problem is indeterminate, since the etiualion between a and a' admits

an infinite number of solutions. Let a and a' in the figure represent one

solution, then (^ + ^^^^^-3 + ^^' + ^li^^y,. ^ 1 is the equa-

tion of the ellipse referred to the axes A'l, I'l. Call the intercepts of the

ellipse on the axes Xi and I'l respectively ai and hi , and the equation

becomes ^ + f^ = 1.

When the equation of the ellipse referred to a pair of lines through the

center contains only the squares of the unknown quantities, these lines

are called conjugate diameters of the ellipse. The condition of conjugate

diameters of the ellipse is tan a tan a' = — —

.

a'

42. Determine a set of oblique axes, with the origin at the center, to

which, when the hyperbola is referred, its equation takes the same form

as the common equation of the hyperbola.

The result, tanatana' = — , shows that the problem is indeterminate.

jfl

«'-

tana tan a' = — is the condition of conjugate diameters of the hyperbola.
d^

43. Determine a set of oblique axes, origin at center, to which, when
the hyperbola is referred, its equation takes the form xij — c.

44. Determine origin and direction of a set of oblique axes to which,

when the parabola is referred, its equation has the same form as the

common equation of the parabola.

45. Show that the equation of the parabola y'^ = 2pz when referred to

its focal tangents becomes x^ + y^ — a^, where a is the distance from the

new origin to the points of tangency.



CHAPTER VI

POLAR OOOEDINATES

Art. 36.

—

Tolau Cooudinates of a Point

In the plane, suppose the point A and the straight line AX
through A fixed. A is called the pole, AX the polar axis,

p ,/ The angle which a line AP makes
^'"''^^

with AX is denoted by 6. is

positive when the angle is con-

ceived to be generated by a line

X starting from coincidence withAX
turning about A anti-clockwise ; 9

is negative when generated by a

line turning about A clockwise.

When 6 is given, a line through A
is determined. On this line a point is determined by giving

the di-stance and direction of the point from A. . The direction

from A is indicated by calling distances measured from A in

the direction AP of the side of the angle positive, those

measured in the opposite direction negative. The point P is

denoted by the symbol (r, ^), the point P' by the symbol

(-r, e). The symbols (r, ^ + 27r?i), (-'', ^ +(2?i + l)7r),

where n is any integer, denote the same point. To every sym-

bol (r, &) there corresponds one point of the plane ; to every

point of the plane there corresponds an infinite number of

symbols (r, d). Under the restriction that r and 6 are positive,

and that the values of B can differ only by less than 2 tt, there

exists a one-to-one correspondence between the symbol (/•, Q)

70
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aud the points of the plane, the pole only excepted, r and

are called the polar coordinates of the point.

1. Locate the points whose polar coordinates are (2, 0)

;

(-3,0); (3,l,r); (-2,7r); (4,f,r); (-4,l7r); (4,-|7r); (1,1);

(-2,1); (-1,0); (1,180°); (-4,45°); (4,225°); (-4,405°);

(0, 0) ; (0, 45°)
; (0, 225°).

2. Show that r'- + r"- - 2 r'r" cos (0' - 0") is the distance be-

tween (?•', 6'), (r", 0").

3. Find the distances between the following pairs of points,

(4,l7r), (3,7r); (8,J-7r), (6,f,r); (2V2, -^7^), (l,i7r);(0,0),

(10, 45°); (5, 45°), (10, 90°)
; (-0, 120°), (- 8, 30°).

AuT. 37. — PoLAK Equations ok CiEoiiETiiio Fiuujies

The conditions to be satisfied by a moving point can some-

times be more readily expressed in polar coordinates than in

rectilinear coordinates. If a point moves in the XF-plane in

such a manner that its distance from the origin varies directly

as the angle included by the X-axis and the line from the

origin to the moving point, the rectangular equation of the

locus is Va.'- -f y- — a tan~^-,, the polar equation r = a9.

Desired information about a curve is often obtained more
directly from the polar equation than from the rectilinear

equation of the curve. This is especially the case when the

distances from a fixed point to various points of the curve are

required. Thus if the orbit of a comet is a parabola with the

sun at the focus, the comet's distance from the sun at any time

is obtained directly from the polar equation of the parabola.

AuT. 38.— Polar Equation of Stuakjut Link

A straight line is determined when tlie lengtli of tlic perpen-

dicular from the pole to the line and the angle included by this

perpendicular and the polar axis are given. Call the per-
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peiuliciilar p, the angle a, and let (r, 6) be any point of the

line. The equation

Fig. C3. \

; for 6 = a.

cos {p — a)

expresses a relation satisfied by

the coordinates r, of every point

of the straight line and by the

coordinates of no other point;

that is, this is the equation of

the straight line. For 6 — 0,

from ^= to ^= 90°+ «, r is
cos «

'

positive ; from = 00° + a to = 270° + a, r is negative
;

from 6 = 270° + a to 6 = 3G0°, r is again positive. For

6 = 90° + a and for 6 = 270° + «, r = ± oo . These results ob-

tained from the equation agree with facts observed from the

figure.

A straight line is also determined by its intercept on the

polar axis and the angle the line makes witii the polar axis.

Call the intercept b, the

v'^-' angle a, and let (r, 6) be any

point in the line. Then
6 sin a . ^,

r =—.—

7

;rr IS thc cqua-
sin(« — ^)

tion of the line. For ^ = 0,

r = b; ?• is positive from

^ = to 6 = a; negative

from ^ = a to 6 = 180° + a;
^"'- ^-

again positive from 6 = 180°

+ atoe = 360°. ¥ov 0=a and 6 = 180° + «, r = ± oo. These

results may be obtained from the equation or from the figure.

Akt. 39.— Polar Equation of Circle

The equation of a circle whose radius is E when the pole is

at the center, the polar axis a diameter, is r = E.
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AVheu tlic pole is on tlio circuinfeieuce, tlio polar axis a

diameter, the equation of the circle is r = 2 li cos 0.

r is positive from ^ = 0° to ^ = 90°, negative from $ = 90° to

6 = 270°, and again positive from 6 = 270° to ^ = 300°. The
entire circumference is traced from ^ = 0° to 6 = 180°, and

traced a second time from ^ = 180° to ^ = ,'>60°.

The polar equation of a circle radius R, center (>•', 6'), cur-

rent coordinates r, 6, is »-^ — 2 r'r cos (6 — 6')= lir — r'-, whence

r = r' cos (6 - $') ± -y/R- - r'- sm\e - J'), r is real and has

two unequal values when sin-(^ — ^')< -y,; that is, wIkmi

R R ^

<sin(^ — ^')< — ; these values of r become equal, and
r r

jy
the radius vector tangent to the circle, when sin(^— ^')= ±—

;

R-
^

r is imaginary when sin^(^ — 6')> —-
^1

Art. 40.— Polar Equations of the Conic Sectioxs

Take the focus as pole, the axis of the conic section as polar

axis. From the definition of a conic section

r = e- DE = e (DA + AE) =e['- + r cos d

Hence r—j^+ ercofiO, r
1 — e cos 6
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Since in the parabola e = 1, the polar equation of the parab-

Ola IS r = :; 1,-

In the ellipse and hyper-

bola the numerical value of

the semi-parameter p is

a(l-e^);

hence the polar equation of

ellipse and hyperbola is

1 — e cos

In the ellipse e is less than

unity, and r is therefore
Fig. 07.

. -^
always positive. For ^ = 0,

r — a(l + e), showing that the pole is at the left-hand focus.

In the hyperbola e is greater than unity, and r is positive

from 6 = to 6 = cos~^ - in the first quadrant, negative from

1
^

1,-1^ ;r, 4-1.0 fi,.of r.,no,iT.o,.f fr> fl — f-og-'- in the fourthcos~' - in the first quadrant to
e

quadrant, again positive from

rant to ^ = 3G0'

,^il
cos^^ - in the fourth quad-

e
1

r becomes infinite for 6 = cos ^ - ; hence lines

' 1
through the focus making angles whose cosine is - with the

axis of the hyperbola are parallel to the asymptotes of the

hyperbola.

Problems. — 1. The length of the perpendicular from the pole to a

straight line is 5 ; this perpendicular makes with the polar axis an angle

of 45°. Find the equation of the line and discuss it.

2. Derive and discuss the polar equation of the straight line parallel

to the polar axis and 8 above it.

3. Derive and discuss the equation of the straight line at right angles

to the polar axis, and intersecting the polar axis 4 to the right of the pole.

4. Derive and discuss the equation of the circle, radius 5, center

(10, iTT).



POLAR COORDINATES 75

5. Derive and discuss Uie equation of tlie circle, radius 10, center

(5, Iw).

6. Derive and discuss tlic equation of the circle, radius 8, center

(10, ]7r).

7. Derive and discuss the equation of the circle

(15, tt).

8. Derive and discuss the equation of the circle.

(10, ^tt).

9. Find the polar equation of the parabola whose parameter is 12.

Find the polar equation of the ellipse whose axes are 8 and 6.

Find the polar equation of the ellipse, parameter 10, eccentricity
\

Find the polar equation of the ellipse, transverse axis 10, eccen

radius 10, center

radius 10, center

10.

11.

12.

tricity

13.

14.

15.

4 c2,-2 co^l ,

Find the polar equation of the hyperbola whose axes arc 8 and G.

Find polar equation of hyperbola, transverse axis 12, parameter 0.

Find polar equation of hyperbola, transverse axis 8, distance be-

tween foci 10.

16. Find the eijuation of the locus of a point moving in such a manner

that the product of the distances

of the point from two fixed

points is always the scjuare of

the half distance between the

fixed points. This curve is called

the lemniscate of Bernoulli.

By definition ViV^ = c^. From
the figure rx^= r-+ c^-2cr cos 6,

r^ = r2 -f- c2 + 2 cj- cos 9, hence rrro- — r* + 2 c^r'^ + <:

and r2 = 2 ^2 (2 cos2 ^ - 1), r^ = 2 c^ cos (2 0).

Corresponding pairs of values of Vi

and r2 may be found by drawing a

circle with radius r, to this circle a

tangent whose length is c. The dis-

tances from the end of the tangent

to the points of intersections of the

straight lines through the end of the

tangent with the circumference are

corresponding values of r^ and j-o, for

7\S Tli = c'. The inter.sections of

arcs struck off from Fi and Fo as

centers with radii TS and Tli deter-

mine points of the lemniscate.
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17. A bar turns around and slides on a fixed pin in such a manner
tliat a constant lengtli projects beyond a fixed straiglit line. Find the

equation of the curve traced by the end of the bar. This curve is called

the conchoid of Nicomedes.
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If tlie iiuinl.or oi'

points located I'roiu ^=
to ^ = 2 TT is indefinitely

increased, the polygon

formed by joining tlu?

successive points ap-

proaches the circumfer-

ence of a circle as its

limit. Tlie form of the

equation shows at once

that the locus is a circle

whose radius is 5.

Example. — Plot r = aO.
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From 6 = to 6 = cos~^ f, r varies continuovisly from — 2 to

— cc ; from ^ = cos~^f to

= TT, r decreases contimi-

ously from + co to -{- -h ;

from 6 = Tr to 6 = cos~^ | in

the fonrtli qxiadrant, r in-

creases continuously from ^j

to + CO ; from 6 = cos~^f in

the fourth quadrant to

6 = 2 TT, r increases from
— CO to — 2. r is discon-

tinuous for ^=cos"'|. This

equation represents an h}'-

perbola whose less focal

distance is i, greater focal distance 2, semi-parameter A, eccen-

tricity f
Example.— Plot /-^ = 8 cos (2 9).

= 0° 22.^° 45° 135° 157i° 180°

r = ± 2.828 ± 2.378 imaginary ± 2.37 ± 2.828

From 180° to 300° the

curve is traced a second

time. The pole is a cen-

ter of symmetry of the

curve.

'

Problems. — Plot

COS

cos (6 — J tt)

3. r = ncnsi{3 0).

4. )• = 2 cos 0.

5. r= asm (2 0).

6. r = acos(o0).

7. r = asin(Se).

8. »' = rtsin(4^).

9. r = a sin (5 6).

10. r = ^, the reciprocal spiral.

11. r — a", the logaritlimic spiral.
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12.
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gular coordinates x and y of the same point ; substitute in the

polar equsition F(r, 6)= 0, and the resulting equation /(a;, ?/)=:0

is the rectangular equation of the curve.

From the figure

X — m
r = y/{x - my +{y- w)^ cos (6 + 6') =

sin(^ + ^')-
•'~'"

^{x - mf + (2/
- ?0'

V(.x'-m/+(y-n)^

When the origin is at the pole, and the X-axis coincides with

the polar axis, these formulas become

r — V.V- + ]j\ cos Q =
^

sin 9 = •

VaT- + y- Var + y-

Problems. — Transform from rectangular coordinates to polar, pole at

origin, polar axis coinciding with A'-axis, and plot the locus from both

equations.

1. x2 + ?/^ = 25.
_

6. 2/2 = i(4.T-a;2).

2. X- + 2/2 - 10 X = 0. 7. ?/ = - 1 (4 X - x^).

3. y^ = 2j-)X. 8. if -Sx>j + x^ = 0.

4. a;2 - 2/2 = 25. 9. (x^ + 2/-)'^ = «" i^' - f')-

5. x2/ = 9.

Transform from polar coordinates to rectangular coordinates, X-axis

coinciding with polar axis.

10. r = «, origin at pole.
^^ ,. ^ 9

^
p^j^ ^^ ^^^ ^^

11. r = 10 cos e, origin at pole. 4 - 5 cos ^

12. 9-2= «2 cos (2 61) , origin at pole. le. r = , pole at (4, 0).
5 — 4cos&

13. )•- cos .', — 2, origin at pole.
, cos f2 0^ . • . ,- ' ° ^

17. r- = '- '
, origm at pole.

„ cos* e
14. ,. = i^

, poleat(ip, 0).
, .. n •• . ,

1 - cos 18. r2cos'*^ = 1, origni at pole.



CHAPTER VII

PROPERTIES OF THE STRAIGHT LINE

AuT. 43, — Equations of the Straight Line

The various conditions determining a straight line give rise

to different forms of the equation of a straight line.

I. The equation of the straight line determined by tlie two

l.oints (x', ?/'), (x", y").

The similarity of the triangles

rP'D and P'P"D' is the geometric

condition which locates the point

P{x, y) on the straight line through

P'ix', y') and P"(.^•", ?/")• Tl>is

condition leads to the equation

y-y ^
'^,—

^

x' — x"

tancrular coordinates

^(x — o:'). In rec- Fio. 77.

tan a, where « IS the an,<rl(

the line

y -?/ _
x' — x"

makes with the X-axis. In oblique coordinate!

sin a
-, where /3 is the angle between the axes, a

x' — x" sin (/3 — a)

the angle the line makes with the X-axis.

II. The equation of a straight line through a given point

(x', y') and making a given angle « with the X-axis is

y — y' = tan «(a; — x'). If the point {x', y') is the intersection

(0, n) of the line with the X-axis and tan « = m, the equation

becomes y = 7nx + n, the slope equation of a straight line.

On the straight line y — y' — tan a{x — x') the coordinates of

the point whose distance from (.«', ?/') is (7, are x = x' -f d cos a,

y = y' -\- d sin a.

a 81



82 ANALYTIC GEOMETRY

III. The equation of the straight line whose intercepts on

the axes are a and 6.

Let {x, y) be any point in the

line. From the figure
a—x_y
a b

1, thewhich reduces to - + -

a h

intercept equation of a straight

Fig. 78. Iji^g.

IV. When the length p and the inclination « to the X-axis

of the perpendicular from

the origin to the straight

line are given.

Let {x, y) be any point in

the straight line. From the

figure, AB+BC=p, hence

X cos (i + y sin « = p.

This is the normal equa-

tion of a straight line.

The different forms of

the equation of a straight line can be obtained from the general

first degree equation in two variables Ax -\- By -\- C = 0, which

always represents a straight line.

(a) Suppose the two points (x', y'), (x", y") -to lie in the line

represented by the equation ^x + i>?/ -|-C= 0. The elimina-

tion of A, B, C from (1) Ax+By+C=0, (2) Ax'+By'+C=0,

(3) Ax" -f By" + C = by subtracting (2) from (1) and (3) from

(1), and dividing the resulting equations gives

y-y = y' — y'

x' - x'
(x-x').

(b) Callin;

X-axis ((, on

:
the intercept of the line Ax -\- By +C —0 on the

C
the F-axis b, for y = 0, x = - = a, for x — 0,

y — — b. Substituting in the equation Ax -f By + C = 0,

there results --f-?^=l.
a h



I'liOriCliTIES OF THE STliAKniT LINE 83

(f) Tlie equation .l.i- + B;/ +C= U may be written

^ b'^ b'

wliicli is of the form y = vix + n.

(d) Let Ax + Bij + C = and x cos a + y sin a =]> repre-

sent the same line. There must exist a constant factor m
such that VIAx + vi By + i>iC = and x cos « + y sin « — p =
are identical. I'rom tliis identity mA = cos a, mB — sin a,

-,itC = —2>- The iirst two equations give nrA^ + vt^B'- — 1,

hence iii — —

-

That is,

Vvl- + B'

^A' + B' VA' + B' y/A' + B'

is tlie normal form of the e(]uation of the straight line repre-

sented by Ax + By + C = 0.

The nature of the problem generally indicates what form of

the equation of the straight line it is expedient to use.

Problems. — 1. AVrite the tuiuation of the straight line through the

points (2,3), (-1, 4).

2. Write tlie eiiuation of the straight line througli (- 2, 3), (0, 4).

3. Write the intercept eijuation of tlie straight line through (4, 0),

(0, 3).

4. Write the equation of the straight line whose perpendicular dis-

tance from the origin is 5, this i)erpentlicular malting an angle of 30° with

the A'-axis.

5. Write the e(iuation ^ + | = 1 in the slope form.

6. Write the equation 2 x - 3 ?/ = 5 in the normal form.

7. Write the equation of the straight line through (4, -3), making

an angle of 135° with the A'-axis.

8. On the straight line through (- 2, 3), making an angle of 30° with

the A'-axi-s, find the coordinates of the point whose distance from

( - 2, 3) is 0.

9. The vertices of a triangle are (3, 7), (5, - 1), (-3, 5). Write

equations of meilians.
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Art. 44.— Angle between Two Lines

Let V be the angle between the straight lines y — mx + n,

y = m'x + n'. From the figure

V= u — a', hence

. Tr_ tan a — tan a'

1 + tan a tan a'

Since tan « = m, tan «' = 7/1'

— tanF= When the
1 + ?«?u'

lines are parallel, V=0, which

requires that m — m'. When the lines are perpendicular,

F=00°, Avhich requires that 1 -\-mm' = 0. or m'

=

m
If the e<|uations of the lines are written in the form

Ax + By+C=0, A'x + ]^y+a = 0, tanF^^^-||.

The lines are parallel when A'B — AB' = 0, perpendicular

when AA' + BB' = 0.

The equation of the straight line through (x', y') perpen-

dicular to y = mx + H is y — y' = (x — x').

m
The equation of the straight line through (x', y') parallel to

y = mx + n is y — v' — ta (x — x').

Let the straight line y — y' = tan a'(x — x') through the

point (x', ?/') make an angle 6 with

the line y — mx -f n. From the

figure, «' = ^ + «. Hence

, ,_ tan^+tan« _ ta,n6+m
1— tan ^ tan a 1—m tan 6'

since tan a = m. Therefore the

equation of the line through (x', y')
Fic. 81.

making an angle 6 with the line y — mx-\-n is

tan 6 + m
1 — 7)1 tan (

y-y .(x-x').
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Problems. — 1. Find the angle the line

85

•^ = 1 makes with the
3

A'-axis.

2. Find the angle between the lines 2x + 3y = 1, lx+ lij = 1.

3. Find the e(iuation of the line through (4, -2) parallel to

5x-7i/ = 10.

4. Find the equation of the line through (1, 3) parallel to the line

through (2, 1), (-3, 2).

5. Find the equation of the line through the origin perpendicular to

3x-?/ = 5.

6. Find the equation of the line through (2, - 3) perpendicular to

|a;-.\y = l.

7. Find the ecpation of the line through (0, - 5) perpendicular to

the line through (4, 5), (2, 0).

8. The vertices of a triangle are (4, 0), (5, 7), (-0, 3). Find the

equations of the perpendiculars from the vertices to the opposite sides.

9. The vertices of a triangle are (3, 5), (7, 2), (- 5, - 4). Find the

equations of the perpendiculars to the sides at their middle points.

10. Write equation of line through (2, 5), making angle of 45' with

2x-3i/ = G.

Akt. 45. — Distance from a Point to a Line

Write the equation of the given line in the normal form

cccos« + ?/sin«-i:» = 0. Through the given point P{x', y')

draw a line parallel to the

given line. The normal

equation of this xiarallel

line is

X cos a + y sill (t = AP'.

Since (x', y') is in this line,

x' cos a 4- y' sin « = AP'.
^^^ ^,

Subtracting p = AD', there

results x'cosa + y' sin a- p=PD; that is, the perpendicular

distance from the point {x',y') to the line x cos a+ y sin a-p=0
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is x' cos « + y' sin « — p. The manner of obtaining this result

shows that the perpendicular FD is positive when the point P
and the origin of coordinates lie on different sides of the given

line ; negative when the point P and the origin lie on the same

side of the given line.

The perpendicular distance from {x\ y') to Ax + J5^ + C'=

is found by writing this equation in the normal form

V^' + B" ^'A' + B" V^- + B-

j{x' 4- Bii' + C
and api)lving the former result to be PD = ' „

' 3=

—

i L ^ ^ V.l- + B'

This formula determines the length of the perpendicular; the

algebraic sign to be prefixed, which indicates the relative posi-

tions of origin, point, and line, must be determined as before.

Problems. — 1. Find distance from (-2,3) to 3 x + 5 y = 15.

2. Find distance from origin to | x — | ?/ = 7.

3. Find distance from (4, - 5) to line through (2, 1), (-3, 5).

4. Find distance from (3, 7) to ^^_^ = IjL=li^.

5. The vertices of a triangle ar6 (3,2), (-4,2), (5, -7). Find

lengths of perpendiculars from vertices to opposite sides.

6. The sides of a triangle are ?/ = 2 x + 5, 3
- ^ = !> 4 x - 7 y = 12.

Find lengths of perpendiculars from vertices to opposite sides.

7. The sides of a triangle are 2/ = 2x + 3, 2/ = -|x + 2, y -x-b.
Find area of triangle.

Art. 46.— Equations of Bisectors of Angles

Let the sides of the angles be Ax+By+C=0, A'x+Bhj^-G'=0.

The bisector ah is the locus of all points equidistant from the

given lines such that the points and the origin lie either on the
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same side of each of the two
;

of each of the two given Hues.

In either case the perpendicu-

lars from any point {x, y) uf

the bisector to the given lines

have the same sign, and the

equation of the bisector is

Ax -f Bif + C_ A'x + B'n + C"

riven lines or on diiferent sides

V^- + B' VA" + B"

The bisector cd is the locus

of all points equidistant from ^'"- ^^•

the given lines and situated on the same side of one of the

given lines with the origin, while the other line lies between

the points of the bisector and the origin. The perpendiculars

from any point (x, ?/) of the bisector cd to the given lines are

therefore numerically equal but with opposite signs, and the

n ,, T ^ ,. Ax + By + C A'x + B'jf + C
equation of the bisector m is

.' _
VA' + B' -VA" + B'

Problems. — 1. Find the bisectors of the angles whose sides are

3 .X + 4 (/ = 5, Hx - 1 >j = 2.

2. Find the bisectors of the angles whose sides are ^x — ly = 1,

2/ = 2x-3.

3. Find locus of all points cciuidistant from the lines 2x + 7 y = 10,

8 a; — 5y = 15.

4. The sides of a triangle are 5a: + 3 ?/ = 9, l x + I y = I, y = d x - 10.

Find the bisectors of the angles.

5. The sides of a triangle are 7x + 5i/ = 14, lOx — 15y = 21, y = 3x+ 7.

Find the center of the inscribed circle.

AuT. 47.— Lines thuough Ixtekskctiox of Givk.v Lines

Let (1) Ax + B>/+C.= and (2) A'x + B'>/ + C = Ije the

given lines. Then (3) Ax + By + C -\-k (A'x + B'y + C)= 0,

where k is an arbitrary constant, represents a straight line
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tlirougli the point of intersection of (1) and (2). For equation

(3) is of tlie first degree, hence it represents a straight line.

Equation (3) is satistied when (1) and (2) are satisfied simul-

taneously, hence the line represented by (3) contains the point

of intersection of the lines represented by equations (1) and (2).

If the line Ax + B>j+C+ Jc (A'x + B'y + C")= is to contain

the point (x\ y'), k becomes - ^,^, _^ J^y _^
^r Hence

is the equation of the line through (x', y'), and the intersection

of (1) and (2).

If the equations of the given lines are written in the normal

form, (1) X cos a + ?/ sin « —p = 0, (2) x cos «'+ ?/ sin «' — i''= '*?

the A; of the line through their point of intersection

(3) X cos u + y sin a — 2> + k i^' cos a' + y sin a' — 2>') =
-,. , ^ i. ^ i- 7 a;cos«+?/sin«— />

has a direct geometric interpretation. A;= ——
-. ; :,

a;cos« +?/sin« —^>

that is, A; is the negative ratio of the distances from any point

(x, y) of the line (3) to the lines (1) and (2).

Problems. — 1. Find the equation of the line through the origin and

the point of intersection of 3x - 4?/ = 5 and 2 x + 5?/ = 8.

2. Find the equation of the locus of the points whose distances from

the lines i; x - 5 y + 2 = 0, - - ?^ = 1 are in the ratio of 2 to 3.

3 6

3. Find the equation of the line through (- 2, 3) and the intersection

of the lines 8 x - 5 ?/ = 15, 3 x + 10 ?/ = 8.

AiiT. 48.— TuuEE Points in a Straight Line

Let the three points (x', ?/'), (a-*", y"), {x"\ V'") lie in a straight

line. The equation of the straight line through the first two

points is y -y' = -[,
~-'„ {x-x'). By hypothesis the point

x — X



PnOPEliTlES OF THE STRAIGUT LINE 8'J

?/' — ?/"

(x'", y'") lies in tliis liue, hence y"' —y' = \, —^,(^"' ~ ^')-

Simplifying-, (1) x'y'" - x"y"' + x"y' - x"'y' + x'y" - x"'y" = 0.

When this equation is satisfied the three points lie in a

straight line, whether the coordinates are rectangular or

oblique. Notice that (1) expresses the condition that the

area of the triangle whose vertices are (x', y'), (x", y"),

(x'", y'") is zero.

Problenls.— 1. In a parallelogram each of the two sides through a vertex

is prolonged a distance equal to the length of the other side. Prove that

the opposite vertex of the parallelogram and the ends of the produced sides

lie in a straight line.

2. In a jointed parallelogram on two sides through a common vertex

two points are taken in a straight line with the opposite vertex. Show
that these three points are in a straight line however the parallelogram is

distorted.

Art. 49.

—

Tiiiiek Links through a Point

Let the three lines Ax +% + C'= 0, A'x + B'y + C" = 0,

A"x-j- B"y -\- C" = pass through a common iwint. IMako

the first two of these equations simultaneous, solve for x and y,

and substitute the values found in the third equation. There

results

AB'C" + A'B"C+A"BC' - A"B'C-A'BC" - AB"(J' = 0,

wliieh is the condition necessary for the intersection of the

given lines.

The three lines necessarily have aconiiudu ])oiut if constants

K,, K.,, K;, can be found such that ki(Ax -\- By + C)+ k2{A'x +
J^'ll + C")+ K^{A"x + B"y + 6'")= is identically satisfied.

For the values of x and y which satisfy Ax -\- By -\- C =0, and

A'x -}- B'y -f- C" = simultaneously must then also satisfy

A"x + B"y + C" = ; that is, the point of intersection of the

first two lines lies in the third line.

The second criterion is frequently more convenient of appli-

cation than the first.
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Problems.— 1. The bisectors of the angles of a triangle pass through

a common point.

Let the normal equations of the three sides of the triangle be

a;cosa+ 2/sina-i)i=0, xcosj3+ 2/sin/3-i)2=0, x cos 7 +2/ sin 7-^93=0.

Denote the left-hand members of these

\ equations by a, /3, 7. Then = 0,

|3 = 0, 7 = represent the sides of

the triangle, and a, /3, 7 evaluated for

the coordinates of any point (x, y)

are the distances from this point to

the sides of the triangle. Hence the

equations of the bisectors of the angles

are a- p =0, ^-7=0, 7-0 = 0.

The sum of the equations of the bi-

sectors is identically zero, therefore

the bisectors pass through a common
point.

2. The medians of a triangle pass through a common point.

For every point in the median through C, hence

Simi-
sin B sin A

a sinA- ^sinB = is the equation of the median through C.

larly the equation of the median through B is found to be

7 sin C — a sin ^4 = 0;

of the median through A, /3 sin B -y sin C = 0. The sum of these equa-

tions vanishes identically.

3. The perpendiculars from the vertices of a triangle to the opposite

sides pass tlirough a common point.

The equation of the perpendicular through C is aros A — yScos J5 = ;

through B, 7 cos C - a cos .1 = 0; througli A, & cos 27 - 7 cos C = 0.
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Akt. 50.— Tangent to Cukvk ok Skcond Okdkr

The general equation of the curve of the second order is

ax- + 2bxy + cy- -\-2dx + 2e>/ +/=(). Let (x„, y^ be any

point iu the curve. The equation y — ?/„ = tan a{x — Xq) repre-

sents any line through {xg, y^. The line cuts the curve of the

second order in two points and is a tangent when the two

points coincide. The coordinates of any point in the straight

line are x = Xq-{-1 cos a, y = y^ -\- 1 sin «. The points of inter-

section of straight line and curve of second order are the points

corresponding to the values of I satisfying the equation

{ax,; + 2 6.tv/o + cy,; + 2 dx, + 2 ey,, +/)
+ (2 a.rii cos « + 2 hx.;^ sin « + 2 hy^ cos «

+ 2 cyo sin « + 2 r/ cos « + 2 e sin a)l

+ (a cos- « -f 2 6 cos « sin « + c sin- «)Z^ = 0.

Since (.i-q, .Vo) is in the curve, the absolute term of the equation

vanishes. If the coefficient of the first poAver of I also van-

ishes, the equation has two roots equal to zero, that is the two

points of intersection 6f y — ?/„ = tan a{x — a-,,) with the curve

coincide at (xq, ?/o) when

ax,^ cos a + hx^ sin « + hy^^ cos « + ry,, sin a -\- d cos a-\-c sin a = 0.

The equation of the tangent is found by eliminating cos a and

sin« from the three equations x = x^ -\- I cor a, ?/ = ?/„ + Z sin «,

(ixq cos « + bxo sin a + by„ cos a + cy^ sin a + fZ cos a-\- e sin « = 0.

This elimination is best effected by multiplying the third

equation by I, then substituting from the first two equations,

I cos a=x—Xo, I sin a^y—y^. The resulting equation reduces to

axxo + b(xy, + x„y) + ryy, + r/(.r + .^•,.) + K.'/ + ?/..) +/= 0.

The law of formation of the equation of the tangent from the

equation of the curve is manifest.

Problems. — 1. Write the equation of tlie tangent to x- + y"^ — r"^ at

(;^o, yo).
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2. Write the equation of the tangent to — + f^ = 1 at (xo, ?/o).

d^ 0-

3. Write the equation of the tangent to •'- = 1 at {xq, yo).
a- b'^

4. Write the equation of the tangent to y- = 2px at (xo, yo).

5. Find the equation of the tangents to 4 x^ + y- = 30 at the points

wliere x~\.

6. At what point of x^ — ?/2 = 1 nnist a tangent be drawn to make an

angle of 45° with the X-axis ?

7. Find the angle under which the line y = hx — b cuts the circle

x2 + ?/2 = 49.

8. Find tlie angle between the curves y'^ = C a-, 9 2/2 + 4 ^2 = 30.

9. Find the equations of the normals to the ellipse, hyperbola, and

parabola at the point {xo, yo) of the curve.

The normal to a curve at any point is the perpendicular through the

point to the tangent to tlie curve at the point.

10. Wliere must the normal to ^" + ^ = 1 be drawn to make an angle

of 135'" with the X-axis ?

11. Find the equation of the normal to ?/2 = 10 x at (10, 10).

12. Find equations of focal tangents to ellipse ^ + f-
= 1.

a2 b^



CHAPTER VIII

PKOPERTIES or THE CIRCLE

AuT. 51. — Equation of tiik Cikclr

The equation of the circle referred to rectansjfuhir axes,

radius E, center (a, b), is (x — af +{y — h)- = R'\ This equa-

tion represents all circles in the Xl'-plane. The equation

expanded becomes x^ -\-y~ — 2ax — 2 by -f «- + ?>- — K' = 0. an

equation of the second degree lacking the term in .17/, and hav-

ing the coefficients of x^ and y^ equal.

Conversely, every second degree equation lacking the term

in xy, and having the coefficients of x^ and y- equal, represents

a circle when interpreted in rectangular coordinates. Such an

equation has the form x- -f ?/ — 2 ax — 2 by + c = 0, whicli

when written in the form (x — ay -\-(y — b)' — (V + ^- — c, is

seen to represent a circle of radius ((t- + /r' — c)-, with center

at («, b). a, b,c are called the parameters of tlie circle, aiul

the circle is spoken of as the circle (a, b, 0).

When the center is at the origin, a = 0, b =^ 0, and the eipia-

tion of the circle becomes x^ + y^= R'-

When the X-axis is a diameter, the F-axis a tangent at the

end of this diameter, the circle lying on the ]>ositive side of

the F-axis, a = R, b = (), and the ecjuation of the circle be-

comes 2/^ = 2 Rx — x".

Problems. — Write tlie cciuafions of tlic fnllmvinn; circles:

1. Center (-2, 1), radius 5. 2. Center (- 5, 5), radins 5.

3. Center (- 10, 15), radius 5. 4. Center (0, 0), radius 5.

0:J
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5. Find equation of circle througli (0, 0), (4, 0), (0, 4).

6. Find center and radius of circle through (2, — 1), (— 2, 1), (4, 5).

7. Find center and radius of circle x"^ -{ y'^ -\- i x — Id y = 1

.

8. Find center and radius of circle x- -\- y- + l(i x = 11.

9. Does the line 3 x — 5 y = 12 intersect the circle

a;2 + j/2 - 8 X + 10 2/ = 50 ?

10. Find the points of intersection of the circles

x2 + 2/2-10x + 6y = 20, x2 + 2/2 + 4x- 15y = 25.

Art. 52.— Common Chord op Two Circles

The coordinates of the points of intersection of the circles

a? -{-y'^ -2ax -2hy -\- c = Q, x^ + y^ -2a'x -2 b'y -\-c' =

satisfy the equation

(a;2 + ?/2 - 2 ax - 2 by + c) - (x^ + y^-2 a'x - 2 b'y + c')= 0,

which reduces to

(a - a')x + (b - b')y +(<• - r)= 0.

This is the equation of the straight line through the points of

intersection of the circles, that is the equation of the common
chord of the circles.

The intersections of two circles may be a pair of real points,

distinct or coincident, or a pair of conjugate imaginary points.

Since the equation of the straight line through the points of

intersection is in all cases real, it follows that the straight line

through a pair of conjugate imaginary points is real.

Problems. — Write the equations of the common chords of the pairs of

circles :

1. X- + y- -Gx + 4y = 12, x" + y^ - 'ix + 6y = 12.

2. x2 + ?y2 - lOx - 6?/= 15, x^ + ?/2 + lOx + 6?/ = 15.

3. x" + y- + lx + Sy = 20, x- -y y- + 4x - \0y = 18.
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AkT. 53. POWKR OF A POIXT

Let (;c', y') be any point in the plane of the circle

The eqnation of any straight line throngh (x', y') is

y — y' = tan a (x — x'),

and on this line the point at a distance d from (x', y') has for

coordinates x = x' + d cos a, yz=y'-\-d sin «. The distances

from (x', y') to the points of intersection of line and circle are

the values of d found by solving the equation

|;(.^' _ ay + iy'
- by - R'] + [2 (x' - a) cos a

+ 2(y' - h) sin «] d + d- = 0.

Since the product of the roots of an equation equals numeri-

cally the absolute term of the equation, it follows that the

product of the distances from the point (x', ?/') to the points of

intersection oi y — y' = tan «(x — x') with the circle

(.^ _ ay + (y - by = E"^ is (x' - o)- + (y' - by - /?-.

This product is independent of a ; that is, it is the same for

all lines through (x', ?/'). This constant product is called the

power of the point (x', ?/') with respect to the circle.

The expression {x' — a)--f (?/' — by — Er is the square of the

distance from {x\ y') to the center (a, b) minus the square of the

radius. This difference, when the

point (x', ?/') is without the circle,

is the square of the tangent from

the point to the circle ; when the

point (.!•', )/') is within the circle,

this difference is the square of

half the least chord through the

point.

Let *S' represent the left-hand

member of the equation xr -\- y- — 2 a

S = is the equation of the circle, and S evaluated for the co-

Fir,. S".

2 by + c = 0. Then



96 ANALYTIC GEOMETRY

ordinates of any point (x, y) is the power of that point with

respect to the circle.

Let /i5i = and So = represent two given circles. aS'i = S2

is the equation of the locus of the points whose powers with

respect to /S'l = and /S'2 = are equal. This equation, Avhich

may be written Si — S-, = 0, represents a straight line called

the radical axis of the two circles. The radical axis of two

circles is their common chord.

If three circles are given, Si — 0, S., = 0, S-^= 0, the radi-

cal axes of these circles taken two and two are Si — S^— 0,

S2 — Ss = 0, S3 — Si=: 0. The sum of these three equations is

identically zero, showing that the radical axes of three circles

taken two and two pass through a common point. This point

is called the radical center of the three circles.

Problems. — 1. Find the locus of the points from which tangents to

the circles x- + 7/-
-i- 4x - 8y = b, x^ + 2/2 - 6x = 7 are equal.

2. Find the point from which tangents drawn to the three circles

a;2 + y2 _ 2 x = 8, x2 + 2/2 + 4 y - 12, x2 + ?/- + 4 x + 8 ?/ = 5 are equal.

3. Find the length of the tangent from (— 3, 2) to the circle

(x - 7)2 + (y- 10)2 = 9.

4. Find the length of tlie tangent from (10, 15) to the circle

x2-|- ?/2-4x + C?/- 12.

5. Find tlie length of the shortest chord of the circle

x2 + ?/2 - X + 4 ?/ = 3

through the point (—4, 3).

6. Find the equation of the radical axis of x2 + ?/2 + 5.r - 7 y = 15,

X- + 2/2 - 3 a: + 8 2/ = 10.

7. Find the radical center of x- + y- - ".x - 5, xr + y" - 4x + y - 8,

a;- + y^ + 7 2/ = 9.

8. Find the point of intersection of tlic tln-ee common chords of the

circles x2 + 2/" - 4x - 2 2/ = 0, x2 + ?/2+ 2x+ 2 2/ = ll, x2-|- 2/"-6x+ 42/ = 17

taken in pairs.
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AuT. 54. — Coaxal Svstkms

Let Si — and iS.2 = re[)i't'sent two circles. Then

,S', - kS, = 0,

for all values of the parameter A;, represents a circle tlirough

the intersections of Si = 0, aS^ = 0. The equation ^i — kS., — 0,

interpreted geometrically, gives the proposition, the locus of all

the points vi^hose powers with respect to two circles *Si = 0,

^2 = are in a constant ratio is a circle through the points of

intersection of the given circles.

Si — kS^ = 0, by assigning to k all possible values, represents

the entire system of circles such that the radical axis of any

pair of circles of the system is the radical axis of *S, = and

S., = 0.

If tlie parameters of *S'i = and aS'2 = are a', h', r' and

a", b", c" respectively, the parameters of Si — kSo=^ are

a' — k(i" h' — kh" c' — kc"

1-/0 ' 1-k ' 1-k
'

Let aS' = represent a circle, L = a straight lino. Then
S —kL = represents the system of circles through the points

of intersection of circle and line. The commnii radical axis of

this system of circles is the line L = 0.

Circles having a common radical axis are called a coaxal

system of circles.

Problems. — 1. Write the equation of tlie system of circles tlirougli

the points of intensection of x^ + y- — 2 x + G ?/ = 10 and x- + y- — 4y = 8.

2. Find the equation of the circle through the points of intersection of

X- + y^-2x + Gy = 0, X- + y"^ -4y = 8, and the point (4, - 2).

3. Find the equation of the circle through the points of intersection of

oc^ + 2/2 4. 10 7/ = 6, I X - 1 2/ = 3, and the point (4, 5).

4. Find the equation of the locus of all the points which have etiual

powers with respect to all circles of the coaxal system determined by the

circles x^ + j/2 - 3x + 7 y = 15 and x^ + y'^ + [>x - iy = 12.
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Art. 55.— Okthogonal Systems

Two circles

a? + if — '^ a'x ~-2b'y + c' — 0, x^ + if — 2 a"x — 2 b"y + c" =

intersect at riglit angles when the square of the distance be-

tween their centers equals the

sum of the squares of their radii

;

that is, when

{a' — a")-+{b'— b"f

^a"+b'--c' + a"'+b"''-c",

or 2a'a" + 2b'b" -c' -c" ^0.

If the circle (oj, bi, Cj) cuts each

of the two circles (a', b', c'),

(a", b", c") orthogonally, it cuts every one of the circles

ka" b' - kb" c' - kc

1-k 1-k 1-k

of the coaxal system orthogonally. For the hypothesis is

expressed by the equations

2a'a, + 2 b% - c'- c^ = 0, 2a"a, + 2b"bi -c" -c, = 0;

the conclusion by the equation

9 g' — ka" c b' — ^'^'\

''l-k^'l-k '

c' - kc'

1-k 0,

which is a direct consequence of the equations of the hypothesis.

The condition that the circle (aj, &i, Cj) cuts the circles

(a', b', c') and («", b", c") orthogonally, is expressed by two

equations between the three parameters ttj, &„ Ci. These equa-

tions have an infinite number of solutions, showing that an

infinite number of circles can be drawn, cutting the given

circles orthogonally.

Let Oi, bi, Ci and a.^, bi, c^ be the parameters of any two circles

aSi = 0, aSj = cutting aS' = and S" = orthogonally. Then
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all circles of the coaxal system Si - kyS., = cut orthogonally

all circles of the coaxal system S' - k'S" = 0. For the equa-

tions

2a'((i + - f>'fJi — c' — c, = 0,

2 a"a, + '2 b"h, - c" -(\ = 0,

2a'a., + 2b'b2-c' -c., = 0,

2 a"a., + 2 b"b2 - c" - c.,= 0,

have as consequence

r,a'— k'a" a, — k,cu
, r,b' — k'b" b^ — k^b.2 c'— k

(1)

(2)

(3)

(4)

Ci— kiC2_
1-k' 1-/h

" 1-k' 1-ki 1-k' 1-ki

Subtracting (2) from (1), and (3) from (1), there results

2 (a' - a") ai + 2 (b' - b") b,-c' + c" = 0, (5)

2 (a, - a.) a' + 2 (6i - b.^ 6' - Ci + C2 = 0. (G)

Equation (5) shows that the centers of the orthogonal system

Si - kySo = lie in the

radical axis of the sys-

tem S'—k'S"= 0; equa-

tion (6) shows that the

centers of the system

S' - k'S" = lie in the

radical axis of the sys-

tem Si - kiS2 = 0.

Take for X-axis the

line of centers of the

system S' — k'S", for

y-axis the radical axis

of this system. Then

the equation of any

circle of the system

becomes

x-+y^-2a'x+c'= 0. (a)

Since by hypothesis
fiQ. 89.
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tlie power of (0, ?/') is the same for all circles of the system,

c' must be a fixed constant. In like manner it is found that

the equations of the orthogonal system Si — k^S^ — have the

form
ar+^?/^-2 6i^+ Ci=0, {(3)

where Cj is a fixed constant. The condition for the orthogonal

intersection of two circles when applied to («) and (/3) becomes

Ci = — c'. Hence the equations of two orthogonal systems of

circles, when the radical axes of the systems are taken as

reference axes, are

X- + y^ — 2 a'x + c' = 0, x'^ + 11'— l>'u — c' = 0,

where «' and h' are parameters, c' a fixed constant.

The radii of the circles of the two orthogonal systems are

given by the equations r^ — a^'^ — c\ r'- = h'" -\- c' respectively.

When r and r' become zero the circles become points, called

the point circles of the system. In every case one of the or-

thogonal systems has a pair of real, the other a pair of imagi-

nary, point circles.*

Problems. — 1. Find the equation of the locus of the centers of the

circles which cut orthogonally the circles a;'- + y- — 4 .x + y = 15,

x2 -I- 1/2 -f 5 X - 8 2/ = 20.

2. Find the equation of the circle through the point (2, — 3) and cut-

ting orthogonally the circles x--\-y'^-]-^ x— 7 2/ = 18, x'^-l-y^— 2 x—iy~\2.

3. Find the equation of the circle cutting orthogonally x'^+y'^— \0 x= 9,

3.2 4. 2/2 = 25, x2 + y-i-8y = IG.

* Through every point of the plane there passes one circle of each of

the orthogonal systems. The point in the plane is determined by giving

the two circles on which it lies. This leads to a system of bicircular

coordinates.

If heat enters an infinite plane disc at one point at a uniform rate,

and leaves the disc at another point at the same uniform rate, when the

temperature conditions of the disc have become permanent, the lines of

equal temperature, the isothermal lines, and the lines of flow of heat are

systems of orthogonal circles. The points where the heat enters and

Jeaves the disc are the point circles of the isothermal system.
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4. Find the equation of the system of circles cutting orthogonally the

coaxal system detennined by x'^-\-if+ix+ 6y-\5, x^+ y-+2 z-S y= l2.

5. Write the equation of the two orthogonal systems of circles whose

real point circles are (0, 4), (0, — 4).

Art. 56.— Takgents to Circles

The equation of a tangent to the circle x^ + -if = r'^ at the

point (a*o, ?/o) of the circumference is xxq + yy^ = r\

Let (xi, yi) be any point in the plane of the circle x--\-y'=i~,

(x', y'), (x", y"), the points of contact of tangents from (x^, y^)

to the circle. Then (.r,, y{) must lie in each of the lines

xx' + yy' = 7", xx" + yy" = r-; that is, x^x' + y^y' = r, and

Xix" + yiy" = rl Hence the equation of the chord of contact

is xxi + yyi = r^.

The distance from the center of the circle to the chord of

contact is -, which is less than, equal to, or greater

(a.V + 2/i-)'

than r, according as the point (a-j, y^ lies without the circum-

ference, on the circumference, or within the circumference. In

the first case the points of contact of the tangents from (.Xi, r/i)

to the circle are real and distinct, in the second case real and

coincident, in the third case imaginary. In all cases the chord

of contact is real.

In the equation y = mx + n let m be a fixed constant, n a

parameter. The equation represents a system of parallel

straight lines. The value of n is to be determined so that

the line represented by y = mx + n is tangent to the circle

x^ + y~ = r^. The line is tangent to the circle when the per-

pendicular from the center of the circle to the line equals the

radius; that is, when = 7% ?i= ±rVl + m-. There-

fore, the equations of tangents to v? {- y'^ = r parallel to

y = mx -f n are y = mx ± r Vl + m'.
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Problems. — 1. Find the equations of the tangents to x- -\- y- — 25 at

x = 3.

2. Find the chord of contact of tangents from (2, —3) to x- + y"^ = 1.

3. Find the points of contact of tangents from (5, 7) to x- + y- — 9.

4. Find the equations of tangents to x- + ?/- = 16, making angles of

45° with the A'"-axis.

5. Find the equations of tangents to x^ +?/'-= 25 parallel to ?/=3 x+5.

6. Find the equations of tangents to x^ + y'- = 25 perpendicular to

2/ = 3 X + 5.

7. Find the slopes of tangents to x- + ?/- = 9 through (4, 5).

8. Find the equations of the tangents to x^ + ?/2 = \Q through (5, 7).

9. The chord of contact of a pair of tangents to x' + ?/2 = 25 is

2 X + 3 // = 5. Find the intersection of the tangents.

10. Find equation of tangent to (x — a)^ + (y — b)- — f- at (x', y') of

circumference.

Art. 57.— Poles and Polars

Since it is awkward to speak of the chord of contact or the

point of intersection of a pair of imaginary tangents, the point

(xi, ?/i) is called the pole of the straight line xx^ + yi/i — i^ with

respect to the circle s? -\- y- = r, and xx^ + yy^ — r^ is called the

polar of the point (xj, y^). (x^, ?/,),

which may be any point of the

plane, determines uniquely the

line xxi + yyi — r- ; and conversely,

xxi -\- yyi = r, which may be any

straight line of the plane, deter-

mines uniquely the point (iCj, y^.

The relation between pole and polar

therefore establishes a one-to-one correspondence between the

points of the plane and the straight lines of the plane.

The polar of (.rj, ?/j) with respect to ar-|- ?/-=?- is xxi+yy^=r-,

the line through the center of the circle and {x^, ?/i) is ?/ = '
'.t".

Hence the line through the pole and the center is perpen-
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dicular to the polar, and the angle included by lines fiom the

center to any two points equals the ant,de included l)y the

polars of the two points.

The distance from the center of the circle .r +//- = r to the

l)olar of (.1-,, ?/i) is that is, the radius is the geomet-

ric mean between the distances of the center from pole and

polar.

The i)olar of (.).•„ y^), with respect to the circle x- + U' = t", is

constructed geometrically by draAving a perpendicular to the

line joining (.t„ ?/i) and the center of the circle at the point

whose distance from the center is the third proportional to the

distance from (a*,, ?/,) to the center and the radius of the circle.

The pole of any line, with respect to the circle x- -\- y- = r, is

constructed geometrically by laying off from the center on the

perpendicular from the center to the line the third propor-

tional to distance from center to line and the radius of the

circle.

The polar of (.r„ y{) Avith respect to the circle x- + y- = r- is

xxi + yyi = ?•-, the polar of (x.,, y.,) is xx^ + yy-j = r- The condi-

tion which causes (a'l,?/,)

to lie in the polar of

(X2,y2)is x^Xo+yiy2^r^\

this is also the condi-

tion which causes the

polar of (.r„ //i) to con-

tain (x.,, y-_^. Hence

the polars of all points

in a straight line pass

through the pole of the

line, and the poles of

all lines through a

point lie in the polar

of that point.
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Problems. — 1. Write the equation of the polar of (2, :]) with respect

to x~ + y- = 10.

2. Find the point whose polar with respect to x- + y- = d is S x + 7 y =
18.

3. Find distance from center of circle x- + y- = 26 to polar of (3, 4).

4. Find equation of polar of {x', y') with respect to circle (x - a)'^

+ (2/ - '0- = '•-•

5. Find polar of (0, 0) with respect to x- + y- = r^.

Art. 58.— Reciprocal Figures

If a geometric figure is generated by the continuous motion

of a point, the polar of the generating point takes consecutive

positions enveloping a geometric figure. To every point in the

first figure there corresponds a tangent to the second figure

;

to points of the first figure in a straight line there correspond

tangents to the second figure through a point; to a multiple

point of the first figure there corresponds a multiple tangent

in the second. If two points of intersection of a secant of

the first figure become coincident, in which case the secant

becomes a tangent, the pole of the secant at the same time

must become the point of intersection of two consecutive tan-

gents of the second figure, that is a point of the second figure.

Hence the first figure is also the envelope of the polars of the

points of the second figure. For this reason these figures are

called reciprocal figures. Reciprocation leads to the principle

of duality in geometry.*

Problems. — 1. To find the reciprocal of the circle C with respect to

the circle 0, x- + y- = r^.

* The principle of duality was developed by Poncelet (1822) and Ger-

gonne (1817-18) as a consequence of reciprocation, independently of

reciprocation by Mobius and Gergonne,
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The line nir{xxx + mn = f-) is tlie polar of the center C{xu 2/i)

with respect to the circle ; p (Xa, 2/2) is the pole of any tangent

PT{xx.z + ijih = r^)

to the circle C. Then

OC = (:'•!- + 2/1-)',

pK

CP

X1X2 + yiyo - r-

X\Xi +

Op^(x2-+y2~)l
Hence

OC-pK= CP- Op,

or ^ = ^'.
pK CP

oc—^ is constant, and therefore p nmst generate a conic section whose focus

00
is O, directrix ////', eccentricity -— . This conic section is an ellipse

when O is within the circumference of the circle C, a parabola when is

on the circumference, an hyperbola when is without the circumference.

2. Find the reciprocal of a given triangle.

Call the vertices of the given triangle A{xx, y{), B{xn, 2/2), C(xz, yz)-

The polars of these vertices with respect to x^ + y~ = r'^ are

bc(xxx + 2/2/1 = '•^)'

ac{xx2 + 2/2/2 = »•-),

a5(a:a:3 + 2/2/3 = »•')•

Triangles such that the ver-

tices of the one are the

poles of the sides of the

other are called conjugate

triangles. The conjugate

triangle of the triangle cir-

cumscribed about a circle

with respect to that circle

is the triangle formed by

joining the points of con-

tact.
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3. The straight lines joining the corresponding vertices of a pair of

conjugate triangles intersect in a common point.

The equations of the lines through the corresponding vertices are

Aa, (rciX3 + 2/12/3 - r'^) {xx^ + yy^ - r~)

- (a;iX2 + 2/12/2 - r'^){xxz + 2/2/3 - r-) = ;

Bh, {xiXo + 2/12/2 - r^){xxz + 2/2/3 - r-)

- {x^xz + 2/22/3 - r^) {xx^ + 2/^1 - V'-) = ;

Cc, {XiXs + yzys - r^) (xxi + 2/2/1 - r^)

-(X1X3 + 2/12/3 - r'^) {xx2 + 2/2/2 - »") = 0.

The sum of these equations is identically zero, therefore the lines Aa,

Bb, Cc, pass through a common point.

4. Show that if a triangle is circumscribed about a circle the straight

lines joining the vertices with the points of contact of the opposite sides

pass through a common point.

5. Reciprocate problem 3.

The figure formed by the conjugate triangles ABC, ahc is its own

reciprocal. The poles of the lines joining the corresponding vertices of

ABC and abc are the points of intersection of the corresponding sides

of ABC and abc. Hence the reciprocal of problem 3 is, the points of

intersection of the corresponding sides of a pair of conjugate triangles lie

in a straight line.

6. Reciprocate problem 4.

The reciprocal of the circle is a conic section, the reciprocals of the

points of contact of the sides of the triangle are tangents of the conic sec-

tion, the reciprocals of the vertices of the triangle are the chords of the

conic section joining the points of tangency, hence the poles of the lines

from the vertices to the points of contact of the opposite sides in the given

figure are the points of intersection of the sides of the triangle inscribed

in the conic section with the tangents to the conic section at the opposite

vertices of the triangle. These three points of intersection must lie in a

straight line.

Art. 59.— Inversion*

Let P'(.T„ ?/i) be any point in the plane of the circle x-+ y-=r",

P(x, 11) the intersection of the polar of P', (1) xx^ + ?///i
= i~, and

* The value of inversion in geometric investigation was shown by

Pliicker in 1831. The value of inversion in the theory of potential was

shown by Lord Kelvin in 1845.
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the diameter through P', (2) y = -Av. Then OP • OP' = r'-, that

^Vheu r becomes

is (r - PA)(r + P'A)= r-, ^vheiice

J 1_^1
PA FA V

infinite the circle becomes a

straight line, PA = P'A, and P
and P' become symmetrical points

with respect to the line. P is said

to be obtained from P' by inver-

sion, by the transformation by

reciprocal radii vectors, or by symmetry with res})ect to the

circle. This transformation establishes a one-to-one corre-

spondence between the points within the circle and the points

without the circle.

The coordinates of P are obtained in terms of the coordinates

of P' by making (1) and (2) simultaneous and solving for x

and ?/. There results x = ——-'—
y, y = -—-—•

xl + y,- Xi- -\- y^

ilarly.
t^x

2/1

r'y

X' + y- X- + y-

If the point (.t„ ?/,) describes a circle

x,\-\-y:--2aj\-2hy, + c = 0,

the inverse point (.r, ?/) traces a curve whose equation is

r\-c- 4- r'^v" 2 arx 2 hr>i

(x- + iff x^ + y- X- + y-

which reduces to

+ c = 0,

o
,

o sar-
^" + v ;«

c

2 hr
y +

the erpiation of a, circle. Hence iuvcrsiou Iransrorms llie circle

(a, b, c) into the circle ("alliu''- the radius of tlie
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given circle R, the radius of the transformed circle R',

R- = ^+^J^.

That is,

c. c-

R = -R.

When c = 0, R' = cc; that is, the transformed circle becomes

a straight line, c = is the condition which causes the center

of the inversion circle, which has been taken at the origin of co-

ordinates, to lie in the circumference of the given circle (a, 6, c).

The inverse of a geometric figure may be constructed mechan-

ically by means of an apparatus called Peaucellier's inversor.

The apparatus consists of six

rods, four of equal length h

forming a rhombus, and two

others of equal length a con-

necting diagonally opposite

vertices of the rhombus with

a lixed point 0. The rods

are fastened together by
Fig. 95. .

i. n r 4.

pins so as to allow perfect

freedom of rotation about the pins. If P is made to follow a

given curve, P' traces the inverse, the center of inversion being

O and the radius of inversion (p? -f If)^. For

OP=a cos 6 — bcos 6', OP =^acos6 + b cos 6', a sin 0=1 sin 6>'.

Hence OP • OP' = a- cos- d - Ir cos^ 6', o? sin- 6 -h- sin- 6' = 0,

and by addition OP • OP = cr - Jr.

If the point P describes the circumference of a circle passing

through 0, P must move in a straight line. Therefore the

inversor transforms the circular motion of P about 0', mid-

way between and P, as center, into the rectilinear motion

of P'.
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The cosine of the angle between two circles {a, h, c), (a', h', c')

is found from the ecjuation

(rt _ a'f + {b - b'f = r- + r" - 2 rr' cos 6

. 2aa' + 2 hh' - c — d
to be

2Va^ +7>2 - c V^2 ^ in _ ^

The circles obtained by inverting the given circles are

Calling their included angle $',

cos ^'

2ffa'>-'' 2 ^j?/r^ _ ?;; _ r^

cc' cc' c c'

which reduces to

cos 9' = 2 «a' + 2 6/y - c - c'

2Va^ + ?/ _ c V«'' + 6'2 - c'

Hence the angle between two circles is not altered by inversion.

For this reason inversion is called an equiangular or conformal

transformation.

If two orthogonal systems of circles are inverted, taking for

center of inversion one of the points of intersection of that
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system of circles which has real points of intersection, one of

the systems of circles transforms into a system of straight lines

through a point. Hence the other system of circles must trans-

form into a system of concentric circles whose common center

is this point.



CHAPTER IX

PROPERTIES OF THE CONIO SECTIONS

Akt. 60.— General, Equation

A point governed in its motion by the law— the ratio of

the distances from the moving point to a fixed point and

to a fixed line is constant— generates a conic section. To

express this definition by an eqnation between the coordinates

of the moving point, let the moving point be (x, y), the fixed

point F, the focus (in, n), the fixed line UH'. the directrix

a; cos a + y sin « — ^^ — 0. Calling

the constant ratio e, the defini-

tion is expressed by the equation

PF' = e^ • PD^, which becomes

{m - xf + (n - yf

= e- (x cos « 4- 2/ sin a — py.

a is the angle which the axis of

the conic section makes with the

X-axis, 1^ the distance from the

origin to the directrix.

By assigning to m, n, e, a, p their proper values in any

special case, this general eqnation becomes the equation of

any conic section in any position whatever in the XF-plane.

For example, to obtain the common equation of the ellipse,

which is the equation of the ellipse referred to its axes, make

m = ae, n = 0, a — 0, p = "^, 1 — e^ = ';,• The general equation
a -,

e
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becomes (ae — .^•)- -\- y- = {ex — a)-. Expanding and collecting

terms, / + (1 — e-) X' = a- (1 — e-), or ^+^ = 1.

To obtain the equation of the hyperbola referred to its axis

and the tangent at the left-hand vertex, make m — a(l + e),

„ = 0, « = 0,
p='^Sl+-^, l-e' = --- The general eqna-

e a-

tion becomes (a + ae — a-)- + f = (ex - a — ae)-. Expanding

and collecting terms, ?/- = (1 — e-) (2 ax — x"), or

?/" ^4(2rtx--x-).

Problems. — From the general equation of a conic section referred to

rectangular axes, obtain

:

1. The common equation of the hyperbola.

2. The common equation of the parabola.

3. The equation of the ellipse referred to its axis and the tangent at

the left-hand vertex.

4. The equation of the ellipse referred to its axis and the tangent at

the right-hand vertex.

5. The equation of the hyperbola referred to its axis and the tangent

at the right-hand vertex.

6. The equation of the parabola referred to its axis and the perpen-

dicular to the axis through the focus.

7. The equation of the ellipse referred to its axis and the perpendicu-

lar to the axis through the focus.

8. The equation of the hyperbola referred to its axis and the directrix.
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9. 'I'hc c'liuation of tlir panibola referred to its axis and the dirrctrix.

10. Show that in the hyperbolas ^"-'^"=1, '/' _ ^ = i tlie traiis-
a- b'^ b- u-

verse axis of the first is the conjugate axis of tlie second, and vice versa.

Such hyperbolas are called a pair of conjugate hyperbolas.

11. Derive from the general equation of a conic section the equation

fc2

of the hyperbola conjugate to —
m = 0, n - be, a = 90^ p = '\ 1 - e^ = - ?^

e b-

12. Show that the straight lines tj =±-x are the conunon asymptotes
a

of the pair of conjugate hyperbolas — — ''- = 1, — — •'' = — 1.
«- b- a- b-

13. Find the equation of the ellipse focus (—3,2), eccentricity |,

major axis 10, the axis of the ellipse making an angle of 45° with the

A'-axis.

14. Find the equation of the ellipse whose focal distances are 2 and 8,

center (5, 7), axes parallel to axes of reference.

15. Find the equation of the hyperbola whose axes are 10 and 8, cen-

ter (3, — 2), axis of curve parallel to X-axis.

16. Find the equation of the parabola whose parameter is 0, vertex

(2, — 3), axis of parabola parallel to A'-axis.

Art. 61.— Tangents and Nokmals

Using the common equations of ellipse, hyperbola, and parab-

ola, the equations of tangents to these curves at the point

(.Tu, y/o) of the curve are

tt-
"^ V ' a- lr~ '

yjhi=2){x-\-x^, respectively.

The slopes of these tangents

are for the ellipse

for the hyperbola —'-, for
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the parabola — Calling the intercepts of the tangent on the
1ft) 2 7 2

X-axis X, on the F-axis Y, for the ellipse X = —, Y=—, for

the hyperbola X = ^, Y= , for the parabola X — — Xo,

y= i_?/||. X and y may in each case be determined geometri-

cally, and the tangent drawn as indicated in the figure.

Suppose the point (,<„ ?/,) to be any point in the plane of the

ellipse "-T, + •— = 1. Let {x', y'), (x", y") be the points of con-

tact of tangents from (a-j, y{) to the ellipse. Then must (xi, y^)

... , „ , ,. xx' ?/?/' . xx" ?/w" ^ ,, , . ,,

he m each of the hues -^ -f ^4- = 1, -^ + '^ — 1 5 that is, the
a- ¥ a- 0-

XyV ?/,?/

equations —5- +
'

'

a- b'
1 ^^ + -M!

' a- b-
1 must be true. Hence

the points of contact lie in the line +f=i, diich

therefore the chord of contact. Similarly, it is found that the

X- "'

points of contact from (.r'l, y/j) to the hyperbola -r,
- 1 and

yih
to the parabola y' — lpx lie in the lines -—2^ — 72^ = 1 a,nd

?///, = j>(;« -f- x^ respectively. The coordinates of the points of

contact of tangents through (.»„ v/j) to a conic section are found
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by making the equations of the chord of contact and of the

conic section simultaneous and solving for x and //.

A theory of poles and polars with respect to any conic sec-

tion might be constructed entirely analogous to the theory of

poles and polars with respect to the circle.

The equation y = mx + n, where m is a fixed constant, n a

parameter, represents a system of parallel straight lines. For

any value of n, the abscissas of the points of intersection of

straight line and ellipse %,-\-% = l are found by solving the

equation (b' + aha-) x- + 2 a-mnx + a" (a- - b-) = 0. These ab-

scissas are equal, and the line ?/ = nix + n becomes a tangent

to the ellipse -;, + -'^ = l when u' = b'- + a-ni-. Therefore
u- b-

y = mx ± (b- + a-m-y are the two tangents to the ellipse whose

slope is m. In like manner it is found that the tangents to

the hyperbola whose slope is m are y = nix ±(a-iii' — b'-)- ; the

P
tangent to tlu; parabola whose slope is vi is y — rax + ——
The equations of the normals to ellipse, hyperbola, and parab-

ola at the i)oint (.»•„, ?a,) of the curves are y — 7j,,
= -^(x — x^^,

y -?/„ = - "/"(.f - .f,), //
-

//„ = - -''^(x - .Vu) respectively.

Problems. — 1. Find the eiiuatioiis of taiip:cnts to the ellipse whose

axes arc S and at the points wliose distance from the T-axis is 1.

2. Find the eiiuatioiis of the focal tangents of ellipse, hyperbola, and

parabola.

3. From the point (fi, 8) tangents are drawn to tlu' ellipse ^-|-^=1.

F'ind the coordinates of the points of contact and the equations of the

tangents.

4. At what point of the parabola ?/- = 10x is the slope of the tan-

gent 1 h ?

5. On an elliptical track whose major axis is due east and west and 1

mile long, minur axis ! mile lonsr, in what direction is a man traveling
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when walking from west to east and ] mile west of the north and south

line ?

6. Write the equations of tangents to ^ + ^ = 1 making an angle 45°

with the X-axis.

7. Write the equations of the tangents to — — ^ = 1 perpendicular to

2x-32/ = 4. ^ ^

8. Write the equation of the tangent to y- = 8x parallel to ^ + -^
= ^•

9. Find the slopes of the tangents to — + ^- = 1 through the point
9 4

(4,5). ?/ = mx + (4 + 9m2)2 is tangent to— +^= 1. Since (4, 5) is m
i 9 4

the tangent, 5 = 4 wi + (4 + 9 m^) 2. Solve for m.

10. Find the slopes of tangents to ^ - ^ = 1 through (2, 3).

11. Find the slopes of tangents to y' = Gx through (-5, 4).

12. Find the points of contact of tangents to y" = {Jx through ( -5, 4).

13. Find the intercepts of normals to ellipse, hyperbola, and parabola

on X-axis.

14. Find distances from focus to point of intersection of normal with

axis for each of the conic sections.

15. Prove that tangents to ellipse, hyperbola, or parabola at the ex-

tremities of chords through a fixed point intersect on a fixed straight line.

16. Prove that the chords of contact of tangents to a conic section

from points in a straight line pass through a common point.

17. Show that the tangent to the ellipse at any point bisects the angle

made by one focal radius to tlie point with the prolongation of the other

focal radius to the point.
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The ratio of the focul nulii is "^^ = -—^- Since
PF' a + exo

AF= AF' = ae and AT-
Xo F'T~ a

(« - ex^)

— (« + ea;o)

Hence EJL = I1L^ and Pr bisects FPS.
F'T PF'

18. In the hyperbohx the tangent at any point bisects the angle in-

cluded by the focal radii to the point.

19. In the parabola the tangent at any point bisects the angle included

by the focal radius to and the diameter through the point.*

\D'

Fig. 104.

On problems 17, 18, 19 is based a simple method of drawing tangents

to the conic sections through a given point. With the given point as

center and radius equal to distance from given point to one focus strike

* Since it is true of rays of light, heat, and sound that the reflected ray

and the incident ray lie on different sides of the normal and make equal

angles with the normal, it follows that rays emitted from one focus of an

elliptic reflector are concentrated at the other focus ; that rays emitted

from one focus of an hyperbola reflector proceed after reflection as if

emitted from the other focus ; that rays emitted from the focus of a

parabolic reflector after reflection proceed in parallel lines.

It is this property of conic sections that suggested the term focus or

" burning point."
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off an arc. In the parabola the parallels to the axis through the inter-

sections of this circle with the directrix determine the points of tan-

gency. For TF = TD, hence the triangles TPF, TPD are equal and PT
is tangent to the parabola. In ellipse and hyperbola strike off another

arc with the second focus as center and radius equal to transverse axis.

Lines joining the second focus with the points of intersection of the two
arcs determine the points of tangency. In the ellipse T'F' + T'F = 2 a,

and by construction T'F' + TD' = 2 a, hence T'F - T'D'. The trian-

gles T'PF, T'PD' are equal, and PT' is tangent to the ellipse. In

the hyperbola TF' - TF = 2 a, TF' - TD = 2a; hence TD = TF, the

triangles TPD, TPF are equal, and PT is tangent to the hyperbola.

20. Show that the locus of the foot of the perpendicular from the focus

of the ellipse \--l-=zl to the tangent is the circle described on the
a- b'^

major axis as diameter.

The equation of the perpendicular from the focus {ae, 0) to the tan-

gents y = mx ± (b- + n-m^) •2 is my + x = ae. Make these equations

simultaneous and eliminate m by squaring both equations and adding.

There results x'^ + y^ = a'^.

21. Show that the locus of the foot of the perpendicular from the focus

of the hyperbola ^ - ^- = 1 to the tangent is the circle described on the
a^ b'^

transverse axis as diameter.

22. Show that the locus of the foot of the perpendicular from the focus

of the parabola y^ = 2pxto the tangent is the F-axis.
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Problems 20, 21, 22 may be used to construct the cuuic sections as

envelopes when the focus and the vertices are known.

23. Prove that for ellii)se and hyperbola the product of the perpen-

diculars from foci to tangent is constant and eipial to h'-.

24. Prove that in the parabola the locus of the point of intersection of

a line through the vertex perpendicular to a tangent with the ordinate

through the point of tangency is a semi-cubic parabola.

AkT. 62. (JONJUGATK DiAMETERS

Let {xo, ?/„) be the point of intersection of the diameter

w = tan^ • X with the ellipse —\-^^=l, and call the angle
a' Ir

made by the tangent to the ellipse at (.r,,, ij^^) with the X-axis $\

Then

Y
tan d = •^,
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The equation of tlie ellipse —-{---^^^l referred to a pair of
(r b'-

conjugate diameters and in terms of the semi-conjugate diam-

eters a' and b'is— + ^=l. (See Art. 35, Prob. 39.) This

equation shows that each of a pair of conjugate diameters

bisects all chords parallel to the other. The axes of the

ellipse are a pair of perpendicular conjugate diameters.

Let (xu, 2/o) be the point of intersection oi y — tan 6 • x with

the hyperbola — — ^ = 1, and call the angle made by the tan-

gent to the hyperbola at {xq, y^) with the X-axis 6'. Then

.Vo 4-„„ flf _ ^^•^•o tan 6* tan 6>' = — . Since y = ~x and

b
y — X are

a

tan 0^'^, tan 0'

x„

b%,

tlle common

asymptotes of the pair of con-

jugate hyperbolas

and — —

-

cr b''

l,it is evident

that the condition

tan d tan $' = —

causes y = tan 0' • x to inter-

sect --^=-1 if

tan I

intersects —-£=!. Now suppose (x^, y^ to be the point of
a- y-

intersection of the line y = tan 6' • x with the conjugate hyper-

bola 1, and call the angle made by the tangent to

this hyperbola at (.Ti, ?/i) with the X-axis 6. Then tan &

tan
b-x,

tan e tan 6' = Diameters of the hyperbola

b^
satisfying the condition tan 6 tan 0' =-7, are called conjugate

diameters of the hyi^erbola.
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The ecjuation of the hyperbola '-

of conjugate diameters

diameters a' and b', is -^. — r^=l. (See Art

cr Ir

and in terms of tl

referred to a pair

le semi-conjngate

Prob. 38.)

This equation shows that chords of an hyperbola parallel to any

diameter are bisected by the conjugate diameter. The axes of

the hyperbola are perpendicular conjugate diameters.

The equation of the parabola referred to a diameter, and a

tangent at the extremity of

the diameter, is y^ — 2piX.

(See Art. 35, Prob. 40.) This

equation shows that any diam-

eter of the parabola bisects

all chords parallel to the tan-

gent at the extremity of the

diameter. The axis of the

parabola is that diameter

which bisects the system of

parallel chords at right angles.

It is now possible to deter-

mine geometrically the axes, focus, and directrix of a conic

section when the curve only is given. In the case of the

ellipse draw any pair of parallel chords. Their bisector is a

diameter of the ellipse.

With the center of the

ellipse as center strike

off a circle intersecting

the ellipse in four points.

The bisectors of the two

pairs of parallel chords

joining the points of in-

tersection are the axes

of the ellipse. An arc struck off with extremity of minor

axis as center, and radius equal to semi-major axis, inter-
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sects the major axis in the foci. The directrix is perpendicular

to the line of foci where the focal tangents cross this line.

In the case of the hyperbola the directions of the axes are

found as for the ellipse. The focus is determined by drawing

a perpendicular to any tangent at the point of intersection of

this tangent with the circumference on the transverse axis.

Drawing the focal tangents determines the directrix. The

conjugate axis is limited by the arc struck off with vertex as

center and radius equal to distance from focus to center.

In the case of the parabola,

after determining a diameter

by bisecting any pair of paral-

lel chords, and the axis by

bisecting a pair of chords per-

pendicular to the diameter,

the focus is determined by

the property that the tangent

bisects the angle included by

diameter and focal radius to

point of tangency.

Art. 63.— Supplementary Chords

Chords from any point of ellipse or hyperbola-to the extrem-

ities of the transverse axis are called supplementary. Let

(x', y') be any point of the

Theellipse ^„ + j-^

equations of lines through

(a;', ?/'), (a, 0) and (.-»', ?/'),

(— a, 0) are

Fig. 112.

•/ {X - a),

x' — a

,

y'
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Calling the angles made l)y tlie supplementary eliords with

the X-axis </> and <^', tan <^ tan 4>' — V From the equa-

x'-). Hence tan </> tan (/>' =
;.

d-

— = 1 , tan
<f)

tan </> = —

.

a- Ir a'

V are a pair of conjugate diam-

1 when tan tan $' = — —. Hence
d-

tion of the ellipse, //'- = —(a'

In like manner for the hyperbola

y = tan 6 • x and ?/ = tan 6

eters of the ellipse '—4--^--

d- h-

tan 6 • tan 6'= tan 4> • tan </>',

from which it follows

that if one of a pair of

supplementary chords is

parallel to a diameter the

other chord is parallel to

the conjugate diameter.

This proposition is dem-

onstrated for the hyper-
'

bola in the same manner.

On this proposition are based simple methods of drawing

tangents to ellipse or hyperbola, either through a point of the

curve or parallel to a given line. To draw a tangent to the

ellipse at any point P, dra^v a

diameter through P, a sup-

plementary chord parallel to

this diameter, and the line

through /'parallel to the other

supplementary chord is the

tangent.

To draw a tangent to the

hyperbola parallel to a given

straight line, draw one sup-

plementary chord parallel to the given line, and the diameter

parallel to the other supplementary chord determines the points

of tangency.
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To draw a pair of conjugate diameters. of an ellipse, includ-

ing a given angle, construct on
^^^^^^ /^^^ \

^^^ major axis of the ellipse a

/^^ ^--V nh circular segment containing the

—x ^""^^^ / "^ ~^ ^
-J

^

given angle. From the point of

/

V

/' -
-^^^^T"^-----/!

intersection of the arc of the seg-

1 ^v^y^ 1^ ^^ ]\f) ment and the ellipse draw a pair

I

"^ / \ of supplementary chords. The

PiQ 115 diameters parallel to these chords

are the required diameters.

Art. 64.— Parameters

Since — + ^ = 1 is the equation of an ellipse referred to any

pair of conjugate diameters, it is readily shown that the

squares of ordinates to any diameter of the ellipse are in the

ratio of the rectangles of the segments into which these ordi-

nates divide the diameter. The same proposition is true of

the hyperbola.

Taking the pair of perpendicular conjugate diameters of tlie

ellipse as reference axes and the points (cte, 'p), (0, IS), the

proposition leads to the proportion ^ =—^^

—

v^^^y whence

-^ —— - that is, the i:)arameter to the transverse axis of the
2& 2a'

'

_

ellipse is a fourth proportional to the transverse and conjugate

axes. Generalizing this result, the parameter to any diaineter

of ellipse or hyperbola is the fourth proportional to that diame-

ter and its conjxigate.

In the common equation of the parabola, y''- = 2i')X, the

parameter 2p is the fourth proportional to any abscissa and

its corresponding ordinate. Generalizing this definition, the

parameter to any diameter of the parabola is the fourth propor-

tional to any abscissa and its corresponding ordinate with

respect to this diameter.
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^Vhen (in, v) on the parabola y" = 2px- is taken as origin, the

diameter througli {m, n) as X-axis, the tangent at (?//., n) as

l''-axis, the e(i[uation of the pa-

rabola takes the form Y

yf = -J2h^i-

(See Art. 35, I'rob. 40.)

^' sure

Hence 22h = 4(?ji + J-
jj); that

is, the parameter to any di-

ameter of a parabola is four

times the focal radius of the vertex of that diameter. Calling

the focal radius /, the equation of the parabola becomes

r_
1, find the equation of theProblems. — 1. In the ellipse

rlianieter conjugate to y = x.

2. Find the angle between the supplementary chords of the ellipse

'!.' ^111=1 at the extremity of the minor axis.

n- //-

3. Find the point of the ellipse ^ + ^'-1 at which supplementary

chords include an angle of 45°.

4. Show that the maximum angle between a pair of supplementary

x'
, if , ..„ ..„_, 2 ah

h
chords of the ellipse 1 IS tan-'

«•' o~ ¥ — a-

5. Show that a pair of conjugate diameters of an hyperbola cannot

include an angle greater than 90°.

6. Construct the ellipse whose equation referred to a pair of conjugate

-f^ Find focus and dircc-diameters including an angle of 45°

trix of this ellipse.

7. Find the equation of the hyperbola whose axes arc 8 and 6 re-

ferred to a pair of conjugate diameters, of which one makes an angle of

45° with the axis of the hyperbola. Find lengths of the semi-conjugate

diameters.
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8. Find equation of parabola whose parameter is

ter through (8, 8) and tangent at this point.

Find the locus of the centers of chords of

2x

referred to diame-

^ = 1 parallel to
4

is y^=- a parabola referred to

10. The equation of a pai-abola referred to oblique axes including an

angle of 60° isy- = lOx. Sketch the parabola and construct its focus and

directrix.

11. A body is projected from A in the direction AY with initial

velocity of v feet per second. Gravity is the only disturbing force. Find

the path of the body and its velocity at any instant.

Taking the line of projection as F-axis and the vertical through A as

X-axis, the coordinates of the body t seconds after projection are

x = I gfi, y = vt; the equation of the

path of the body, found by eliminating t,

(J

tangent and diameter through point of

tangency. Comparing this e<iuation with

2/2 = 4 /x, the equation of parabola re-

ferred to tangent and diameter, v'^=2 (jf

;

that is, the initial velocity is the velocity

acquired by a body falling freely from

the directrix of the parabola to the start-

ing point.

If the body is projected from any

point of the parabola along the tangent

to the parabola at that point, and with a velocity equal to the velocity of

the body projected from A wlien it reaches that point, the path of the

body is the path of the body projected from A. Hence it follows that

the velocity of the body at any point of the parabola is the velocity

acquired by a body freely falling from the directrix of the parabola to

that point.

Art. 65.— The Elliptic Compass

Let i^ -f -^ = 1 aud 3l + -^^ = 1 1)0, two ellipses ccmstructed

on the same major diameter.- Let ?/, and ?/. be ordinates cor-

respondintr to the same abscissa, then — = ^^; that is, if ellipses
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are constructed on the same major diameter, corresponding

ordinates are to each other as the minor diameters. The circle

described on the major diameter of the ellipse is a variety of

the ellipse, hence the ordinate

of an ellipse is to the corre-

sponding ordinate of the cir-

cumscribed circle as the minor

diameter of the ellipse is to

the major diameter.

On this principle is based

a convenient instrument for

drawing an ellipse whose axes

are given. On a rigid bar

take PH=a, PK^h. Fix

pins at H and K which slide in grooves in the rulers X and "J

perpendicular to each other

Fo
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Hence the sum of the areas of the rectangles inscribed in

the ellipse bears to the sum of the rectangles inscribed in the

circle the ratio of h to a. By indefinitely increasing the

number of rectangles, the sum of the areas of the rectangles

inscribed in the ellipse approaches the area of the ellipse as its

limit, and at the same time the sum of the areas of the rec-

tangles inscribed in the circle approaches the area of the circle

as its limit. At the limit therefore ^^-^ r-^^ = -, hence
, area of circle a

area of ellipse = - • 7ra^ = irah.
a

Art. 67.— Eccentric Angle op Ellipse

At any point {x, y) of the ellipse ^, + 4, 1 produce the

ordinate to the transverse axis to meet the circumscribed circle

and draw the radius of this circle to the point of meeting.

The angle <^ made by this

radius with the transverse

axis of the ellipse is called

the eccentric angle of the

point (.r, ?/). Erom the figure

x—.a • cos <)!>,

y = -. 1\D=^ - asinc^
(( a

= h • sin <^.

The coordinates of any point

{x, ?/) of the ellipse are thus

expressed in terms of the

single variable ^.

Let AP^ and AP^ be a pair of conjugate diameters of the

1, 6 and d' the angles these diameters make

^'. Let

ellipse I + |:

Avith the axis of the ellipse. Then tan 6 tan 6'
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(.I'l, ?/i) be the coordinates, ^i the eccentric angle of J\; {.i:,,y.,)

tlie coordinates,
<f>.2

the eccentric angle of F2. Then

tan e
_?/, _ h sin
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ellipse with its sides parallel to a pair of conjugate diameters

is 4 6' • AN. The equation

of the tangent to the el-

lipse at (x', y') is

xx' ?///' _ ^

The point (x', y') is the

same as (a cos ^j, h sin <^i),

and the tangent may be

written

X cos <^i y sin c^j
1.

The length of the perpendicular from the origin to this

tangent is AJS —
/cos- </>! sin-</)|\ - ^1

1^ a? ^ U^ )

Hence 4 6' • AN= 4a6; that is, the area of the circumscribed

parallelogram equals the area of the rectangle on the axes.

Art. 68.— Eccentric Angle of the Hyperbola

On the transverse axis of the hyperbola describe a circle.

Through the foot of the ordinate of any point (x, y) of the

hyperbola draw a tangent to this

circle ; the angle made by the

radius to the point of tangency

and the axis of the hyperbola is

called the eccentric angle of the

point {x, y). From the hgure

x = a • sec ^ and, since

7.2

y- —
_^ (a- — X-), y = h • tan 4>.

Let Al\ and AP-. be a pair of conjugate diameters of the
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hyperlxtla 1; (.i\,i/i) the coordinates, c/), the eeeeutric

angle of the point I\ ; 6 and

0' the angles included by the

conjugate diameters and the

axes of the hyperbola. Then

b tan <^,
tan

.Tj (( sec </>!

Since tan 6 tan $' =
,

tane'= r
a sm (pi

Hence the equations of the

conjugate diameters are y = ^

point of intersection of ?/ =

x,y =
a sm

X-
dtl

Po, th

-1, i

a sin ^1 cr 0-

(((tan^i, 6secc^i). Therefore APi — Ui' = a- sec"^ cl> + b- tmr 4>,

AFi = bi^ = a^ tan^ <^i + b^ sec- <^i. By subtraction a^- — bc

= a^ — b-; that is, the difference between the squares of any

pair of conjugate diameters of the hyperbola equals the differ-

ence of the squares of the axes.

The area of the parallelogram whose sides are tangents to a

pair of conjugate hyperbolas at the extremities of a pair of con-

jugate diameters is Aby AN. The equation of the tangent to

x^ y- i , ,
, 7 i. , \ • sec <f>. tan Aj

, ^ mv,r>— — ^=1 at (a sec cb^, b tan <ii) is ^.r --^y = 1. ihe
a^ b'^ a b

perpendicular from tlie origin to this tangent is

AN:

+
tan- </>,

•a- b'-

Hence the area of the parallelogram equals iab; that is, the

area of the rectangle on the axes.
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CHAPTER X

SECOND DEGKEE EQUATION

AuT. 69.— Locus OF Second Deouee Equation

Write the general second degree equation in two variables

in the form

(ur + 2 bx!f + qf + 2 dx + 2 ey + /= 0. (1)

The problem is to determine the geometric iigure represented

by this equation when interpreted with respect to the rectangu-

lar axes X, Y. The equation of this geometric figure when

referred to axes Xj, \\, parallel to X, Y, with origin at (a-o, y^,

becomes

aa;/ + 2 bx,y, + cy,- + 2 {ax, + hy^ + d)x, + 2 {bx, + ry, + e)y,

+ ax,' + 2 bx„yo + cy,' + 2 dx, + 2 cy, +f= 0. (2)

The geometric figure is symmetrical with respect to the new

origin (a^o, y^ if the coefficients of the terms in the first powers

of the variables in equation (2) are zero. The coordinates of

the center of symmetry of the figure are therefore determined

by the equations ax, + by, + fZ = 0, bx, + c?/o + e = 0. Whence

^ eb - cd^ ^ db - ae rj.^^
center is a determinate finite

ac — b- ac — ¥
point only when ac — b' ^ 0.

Suppose ac — b^ =^ 0. The absolute term of ecpiation (2) be-

comes

ax,- + 2 6a-ov/o + c?/o' + 2 dx, -\-2eyo+f

= Xo(axo + by, + (Z)+ 2/o (c?/o + ^.I'o + <')+ dx, + ey, + f
, , , ^ acf+2bde-ae--cd'-fb-= dx, + c!/o + /= -"^^^^

TV,

ac — b'

133
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Writing the last expression , equation (2) becomes
ac — b-

axf + 2 bx,y, + c?/f + —^^ = 0, (3)
ac — c>-

or axj- + 2 6a;i?/i + ci/f + A; = 0, (4)

where k — dx,^ + e^y,, + ./".

If A = 0, equation (3) becomes

ax{' + 2 bx,ii, + ci/f = 0, (5)

which determines two values real or imaginary for •—
; that is,

the equation resolves into two linear equations, and hence

represents two straight lines. An e(|uation which resolves into

lower degree equations is called reducible, and the function of

the coefficients, A, whose vanishing makes this resolution pos-

sible, is called the discriminant of the equation.

Turn the axes Xj, Yi about the origin (xq, ?/(,) through an

angle 6. Equation (4) becomes

(a cos^ e + c sin- ^ + 2 & sin ^ cos 6)x.f

+ (a sin- 6 -j-c cos^ 6 — 2b sin 6 cos 6)yi

+ 2
{
(c - a) sin ^ cos ^ + 5(cos- 6 - sin- 0) I

x.fli. + fc = 0.

Determine 6 by equating to zero the coefficient of x^^^

whence tan 2 (9 = '^ ^
. Writing the res.ulting equation

a — c

3Ixi + Ny^^ + k = Q, it follows that

M+ N= a + c, il/- JV=(a - c)cos(2 ^)+ 2 6 sin(2^).

From tan (2^)=-^, sin (2^) = — -,

cos (2 6)= '^—^ -•

\^b'+{a-c)X'

Therefore, M-\-N=^a + c, 3/- iV^= ^6' +(« - c)-Ss and

MN= ac — b-. Now the equation 3fx.f + Ny-r + A' = repre-

sents an ellipse referred to its axes when M and N have like

signs, an hyperbola referred to its axes when 31 and N have
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unlike signs. Hence the second degree equation represents an

ellipse when ac — b'^> 0, an hyperbola when ac — b^ < 0.

tan (2^)=
^

determines two values for 2 $, and the radi-
a — c

cal \-ih- +(a — c)-J ^ has the double sign. To resolve the ambi-

guity take 2 6 less than 180°, which makes sin (2 6) positive, and

requires that the sign of the radical be the same as the sign of b.

When a — c and the radical have the same sign, cos (2 9) is posi-

tive and 2 6 is less than 90° ; when a — c and the radical have

different signs, cos (2^) is negative and 2 6 is greater than 90°.

The ambiguity may be resolved and the squares of the semi-

axes calculated in this manner. The equation tan (2 6*) = -^^—
-,

written
"^ = '^

, determines two values for tan 0.

1 — tan- a — c

Call these values tan 6i and tan Oo, and let 0^ locate the Xa-axis,

$2 the Fg-axis. In the equation axi^ + 2 bxiy^ + cj/f +k = 0,

substitute Xj = r cos 0, ?/i
= r sin 0, and solve for ?-l There re-

sults r' = -1c
'i- + t&^^'0

Calling the values of r
a + 2 & tan 6^ -f c tan-

corresponding to tan Oi and tan 6.^ respectively r^^ and ?•2^ the

equation of the ellipse or hyperbola referred to the axes X2, Y^,

IS ^,-|---^;=l.
rr ?2-

When oc — b- = 0, the general ecjuation becomes

ax- -f 2 a)(^xy -f cf + 2dx + 2 e>j + / = 0,

which may be written {a^x+chjf+2 dx-\-2 e//+f=(). Trans-

form to rectangular axes with a-.c + c-y = for X-axis, the

origin unchanged. Then

tan 6=~— and sin 6 = ~ ^^'

^
, cos 6 =—^—^•

c' (a + cY (a + c)-^

The transformation formulas become

(a + c)'^ (a + c)^
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The transformed equation is

2,0 ft-^ + c^e c) ft-e - ckl _ f
Vi + -^ T y^—' r ^1

I'

{a+cy {a + cY {a + cy

which may be written in the form

0/.-„y = 2
"'''~''y

(.r,-m),

the equation of a paraboLa whose parameter is 2— ^, and

(« + cy

whose vertex referred to the axes Xj, Y^, is {m, n).

The condition cfc — lr = causes the center (a'o, ?/o) of the

conic section to go to infinity. Hence the parabola may be

regarded as an ellipse or hyperbola with center at infinity.

When the discriminant A also equals zero, the parabola be-

comes two straight lines intersecting at infinity ; that is, two

parallel straight lines.

It is now seen that every second degree equation in two

variables interpreted in rectangular coordinates represents

some variety of conic section.*

Problems.— Determine the variety, magnitude, and position of the

conic sections represented by the following equations

:

1. 14 x2 - 4 xy + 11 ?/2 - 44 X - 58 2/ + 71 = 0.

ac — h'=-\- 150, therefore the equation represents an ellipse. The

center is determined by the equations

14 xo - 2 2/0 - 22 = 0, - 2 xo + 11 yo - 29 = 0,

* The three varieties of curves of the second order are plane sections of

a right circular cone, which is for this reason called a cone of the second

order. When the conic section becomes two parallel straight lines, the

cone becomes a cylinder.

Newton (1642-1727) discovered that the curves of the third order arc

plane sections of five cones which have for bases the curves 21-25 on

page 44. Pliicker (1801-18G8) showed that curves of the third order

have 219 varieties.
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to be the point (2, 3). k = dxo + ei/o +/
mined in direction by tan (2 0) = — j,

wlience 2 tan"- ^ - 3 tan 6-2 = 0, tan

= 2 or - J. M+N= 25, 3IN = 150.

If the X-axis corresponds to tan 6 = 2,

M — Xniust have the same sign as b.

Tiicrefore

M _ ,Y = _ 5, .1/ = 10, .V = 15.

The equation of tlie ellipse

10 a-2- -h 15 2/2- = 60,

The axes are deter-

2/2-

FiG. 125.

2. x:^ - 3 xij + 2/- + 10 X - 10 2/ + 21 = 0.

ac — b" = ~:l, therefore the equation represents an hyperbola. The

center, determined by the equations Xo — % ijo + 5 = 0, — ^ xo + 2/0 — 5=0,

is (— 2, 2). A; = fZ.ro + eyo+f=+ \. The axes are determined in direc-

tion by tan (2 0) =00, whence 0i=45°, 62 -IS^''- By substituting in

r^- = -k "^tJ^^ , ,,. = 2, r^ = -l
rt + 2 ?* tan + c tan-

The equation of the hyperbola referred to its own axes is I x- — ly- = I.

Fm. 127

3. 9 a:2 - 21 xij + 16 2/2 - 18 x - 101 y + 19 = 0.

rtc — 62 — 0, therefore the equation represents a parabola. Write the

equation in the form (3x-42/)2-18x-101 2/-M9=0. Take 3.x-42/=
as X-axis of a rectangular system of coordinates, the origin unchanged.

Then tan = ?, sin0=i?, cos0 = v;, and the transformation formulas
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become x = '^^^~^^S y = §_^lJiAll. The transformed equation is

5 5

25?/i2-75a-i-70?/o+19= 0, wliicli may be written (?/i-|)2=3 (xi + g).

Hence the parameter of the parabola is 3, the vertex referred to the new

axes ( — I , I)

.

4. 2/2 + 2 a;y + 3 x2 - 4 X = 0. 5. y^ + 2 xy - 3 oc^ - 4 x - 0.

6. ?/ -2xy + x^ + x = 0. 7. y^ -2 xij + 2 = 0.

8. ?/ + 4 x?/ + 4 x2 - 4 = 0. 9. 3 x2 + 2 xy + 3y'^= 8.

10. 4 x2 - 4 x?/ + 2/2 - 12 X + 6 ?/ + 9 = 0.

11. x^ — xy — 6 2/2 = 6.

12. x^ + xy + y-^ + x + y = 1.

13. 3 x2 + 4 xy + 2/2 - 3 X - 2 ?/ + 21 = 0.

14. 5 x2 + 4 X2/ + 2/"^ — 5 X — 3 2/
— 19 = 0.

15. 4 x2 + 4 X2/ + 2/- - 5 X - 2 2/
- 10 = 0.

Art. 70.— Second Degree Equation in Oblique

Coordinates

To determine the locus represented by

ax' + 2 hxy + c/ + 2 dx + 2 c?/ +/= 0, (1)

when interpreted in oblique axes including an angle
ft,

let

a'x" + 2 6 'x'y' + cY' + 2 rt'-^'' + 2e'y'+f' = (2)

be the result obtained by transforming the given equation to

rectangular axes, the origin unchanged. Since (x, y) repre-

sents any point P referred to the oblique axes,- and {x\ y') the

same point referred to rectangular axes, the expressions

^ + ?/ + 2 xy cos /3 and x'- + y'^

are each the square of the distance from P to the origin.

Hence x^ + ?/- + 2 xy cos ^ = x'^ + 7j'\ (3)

By hypothesis

ax' + 2 &.^7/ + c//- = «'•'«'- + 2 6'.);'.v' + c^/'-. (4)

Multiply the identity (3) by X and add the product to (4).

There results the identity

(a + X)x^ + 2(b + \ cos /3) xy + (c + A) ?/^

= (a' + X) x'2 + 2 b'x'y' + (c' + X) y".
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Now any value of A wliicli makes the left-hand member of

this identity a perfect square must also make tlie ri,L,^ht-han(l

memlier a perfect square. Tlic left-hand mcialjor is a perfect

, n> + X cos BV < + X.
S(iuare when /

— ^ = —— ,

\ a+X J a+X
, , , • , . .>

,
a +c — 2 6 cos 8 ^ ,

ac — b'- ^tliat IS, when X- -\ ——:-— ^^ X -\ ; = 0.
sin^ /3 sin- /3

The riL,dit-hand nieniher is a perfect square when

A- + 0-t' + b')X + a'c' - b'- = 0.

Since these equations determine the same values for X,

a'e'-b'-' = '-^^^^.
sin- /5

Therefore ac — b^ is greater than zero when a'c' — b'- is greater

than zero. When a'c' — b''^ > 0, equation (2) represents an

ellipse when interpreted in rectangular coordinates. Conse-

quently when ac — &- > equation (1) represents an ellipse

when interpreted in oblique coordinates. In like manner it

follows that equation (1) interpreted in oblique coordinates

represents an hyperbola when ac — Z^- < 0, a parabola when
ac - 62 = 0.

Problems. — 1. Two vertices of a trianc;le move along two intersecting

straight lines. Find the curve traced by the third vertex.

From the figure are obtained the pro-

portionsof y = ^'^Cg + °), /y
b sin oj

X _ sin (e + CO - p)

a sin w
whence
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Substituting in sin^ d + cos- ^ = 1, there results

af _ 2 sin (a - ;3 + co)
_^ tf ^ sin'-^ (a + ^ - w)

^

a'^
" ah Ir sin- w

tlie equation of an ellipse.

2. Find the envelope of a straight line which moves in such a manner

that the sum of its intercepts on two

intersecting straight lines is constant.

Let - + - = 1 be the moving straight
a b

line, then must a -i- b = c, where c is a

constant. The equation of the straight

line becomes - -| — — 1, which may
a c — a

be written a^ -\-(y — x — c)a = ex. The

equation determines for every point

P(x, y) two values of a, to which cor-

respond two lines of the system inter-

secting at (x, ?/). When these two

values of a become equal, the point (;*•, y) becomes the intersection of

consecutive positions of the line; that is, a point of the envelope of

the line. Hence the point

(x, y) of the envelope must

satisfy the condition that

the equation in a has equal

roots. The equation of the

envelope is therefore

(y — X — c)2 + 4 c.^ = 0,

which reduces to

?/2 '- 2 xy + xr — 2 cy + 2 ex

+ C2 =

and represents a parabola.

This problem furnishes

method frequently used

to construct a parabola tan-

gent to two given straight lines at points equidistant from their intersec-

tion. Mark on the lines starting at their intersection the equidistant

points

1, 2, 3, 4, 5, G, 7, 8, ••, -1, -2, -3, -4, -5, - G, -7, -8, •••.
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If the given points are + 5 on one line and + 5 on the other, the straight

lines joining the points of the given lines the sum of whose marks is + 5

envelop the pai-abola required.

3. Through a fixed point a system of straight lines is drawn. Find

the locus of the middle points of the segments of tliese lines includid by

the axes of reference.

4. Find the envelope of a straight line of constant lungtli whose ex-

tremities slide in two fixed intersecting straight lines.

Art. 71.— Conic Section through Five Points

Let (a-i, ?/i), (.«,,, ?/,), (a;,,, ?/..j), {x^, y^) be four points of which no

three are in the same straight line. Let a = be the straight

line through (x^, y{), (x.,, yS)] b = the line through (.i\,, y.^,

(xs, 2/3) ; c = the line through (a%, y.), (x^, y^ ; d = the line

through (a-4, 2/4), O^'i, Z/i)-

The equation ac-\-'kbd=(),

where k is an arbitrary

constant, represents a

conic section through the

four points. For, since a,

b, c, d are linear, the equa-

tion ac + kbd = is of the

second degree, and must

therefore represent a conic

section. The equation is satisfied by a = and b = 0, condi-

tions which determine the point (ic^, 3/2) ; by a = and d — 0,

determining the point (xi, y^); by c = 0, b = 0, determining

(x.j, 1/3) ; by c = 0, d = 0, determining (a;^, y^). Since k is arbi-

trary, ac + kbd = represents any one of an infinite number

of conic sections through the four given points.

If the conic section is required to pass through a fifth point

(x'5, 2/5) not in the same straight line with any two of the four

points {xi, yy), (x.,, y^, {x^, y^), (x^, y^), the substitution of the

coordinates of (x^, 2/5) in ac + kbd = determines a single value
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for Jc. Therefore five points of wliich no three lie in the same

straight line completely determine a conic section.

Problems. — Find the equations of conic sections tlirough the five

points.

1. (1,2), (3,5), (-1,4), (-3, -1), (-4, 3).

The equations of the sides of the quadrilateral whose vertices are

the first four points are a = Sx — 2y + 1 =0, b = x — 4tj + 17 = 0,

c = 5 X — 2 ?/ + 13 = 0, d = Sx — 4y + 5 = 0. The equation of a conic

section through these four points is therefore

(3x - 2?/ + l)(5x - 2?/ + 13)+ i-(a; - 4^ + 17)(3x - 4?/ + 5) = 0.

Substituting the coordinates of the fifth point (—4, 3), k = W- The

equation of the conic section through the five points is

79 x2 - 320 xy + 301 ?/2 + noi x - 1665 y + 1580 = 0.

2. (2, 3), (0, 4), (- 1, 5), (- 2, - 1), (1, - 2).

3. (1, 3), (4, - G), (0, 0), (9, - 9), (16, 12).

4. (- 4, - 2), (2, 1), (-6, 3), (0, 0), (2, - 1).

5. (- i,
-

i), (2, 1), (f, 2), (-J,
- 3), (I,- I).

6. (3, V5), (-2, 0), (-4, - Vl2), (3, - V5) (2, 0).

7. (1,2), (2, 1), (3, -2), (0,4), (3,0).

8. (2,3), (-2,3), (4,1), (1,3), (0,0).

Art. 72.— Conic Sections Tangent to Given Lines

Let « = and b = represent two straight lines intersected

hy the straight line c = 0. The equation ab — kc' = repre-

sents a conic section tan-

gent to the lines a = 0,

6 = at the points of inter-

section of c — 0. For the

equation ab — kc' = is of

the second degree, and the

points of intersection of the

line a = with ab — kc^ =
^'"^ ''^^'

coincide at the point of in-

tersection of the lines a = 0, c = 0, which makes a = tangent

to the conic section. For a like reason b = is tangent to
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ab — kc- — 0. Since k is arbitrary, an infinite number of conic

sections can be drawn tangent to the given lines at the given

points.

The equation of a conic section tangent to the lines x = (),

y = lit the i)oints (a, 0), (0, h) is

a b
Kxy = 0. (1)

The points of intersection of this conic section and the line

MK - + ^ = 1, lie in the
m 11

locus of the equation

i? + f_5_?'Y = A>,. (2)
a b m nj

This last equation is homo-

geneous of the second degree,

and hence represents two

straight lines from the origin

through the points of inter-

r a"
, 2/ 1 A Fig. 138.

section of [--—1 =
VI n

and (- + - — 1) — Kxy = 0. The straight lines represented by

equation (2) coincide, and - + - — 1 = is tangent to

when

is a perfect square ; that is, whei

a b '

I b m - ' ^

\rt mj \b
71
J I \a mj \b nj 2 S
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whence K= if^- lY/^i - ^Y (3)
\(i iiij \h nj

Similarly, — + - — 1 = is tangent to (1) when

Equations (3) and (4) determine the values of - and - in terms

of the arbitrary constant K, which shows that an infinite num-

ber of conic sections can be drawn tangent to four straight

lines no three of which pass through a common point. If

[-— = 1 is also tangent to the conic section represented by

equation (1),

A-=4fl^i)fl-l> (5)

Equations (3), (4), (5) determine -, -,aud A" uniquely, proving
a h

that only one conic section can be drawn tangent to five straight

lines no three of which pass through a common point. This

proposition is the reciprocal of the j)roposition of Art. 71 and

might have been demonstrated by the method of reciprocal

polars.

Problems. — 1 . Find the equation of the parabola tangent to two

straight lines including an angle of 60° at points whose distances from

their point of intersection are 2 and 4.

2. Find the equation of the conic section tangent to two straight lines

including an angle of 45° at (3, 0), (5, 0), and containing the point (7, 8),

the given straight lines being the axes of reference.

Art. 73,— Similar Coxic Sections

The points P{x, y) and P^iinx, my) lie in the same straight

line through the origin 0, and 0I\ = m • OP. The distance

between any two positions of P^, (mx', my'), (mx", my") is m
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times tlie distance between tlie correspondiut,^ positions of

P,{x\y'),{x'\y"). For

{
(m.f' - mx")- + {my' - myy\ ^ = m

\
(^x' - x'J + (//' - y"f\ i

Representing the point P by {x, y), the point P^ ])y (X, Y),
when {x, y) traces a geometric figure, the point (A", Y) traces a

figure to scale m times as large. The effect of tlie substitution

X Y .X——, ?/ = — is therefore simijly to change the scale of tlu;

drawing. Figures thus related are said to be similar. When

the two equations /(;r, y) = 0, fi~-, — j
= are interpreted in

the same axes, their loci are similar and similarly placed

;

when interpreted in differ-
^

ent axes but including the

same angle, the loci are

similar. Ellipses similar

to — + -i- = 1 are repre-

sented by Al +^ 1.

All ellipses
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the figure traced by Pi is similar to that traced by P, the figure

traced by P2 is symmetrical to that traced by P^.

The change of scale of a drawing may be effected mechani-

cally by means of an instrument called the pantograph, which

consists of four rods jointed together in such a manner as to

form a parallelogram ABOC with sides of constant length,

but whose angles may be changed with perfect freedom. On
the rods AB and AC fix two points P and Pj in a straight

line with 0. If the point is fixed in the plane, and the

point P is made to take any new position P', and the cor-

responding position of Pj is P/, the points P', 0, P/ in Fig.

134 are always in a straight line, the triangles Pi CO and

Pi'A'P' are similar and
' P hence

qpi
OP'

P,'C

CA'
m
CA

a constant which may be

denoted by m. Taking

as origin of a system of

rectangular coordinates,

if Pis (a-, 2/), Pi is

(— mx, — my).

If the point P is fixed in

the plane and taken as origin of a system of rectangular coordi-

nates, if the point is (x, y), the point Pj is {mx, my). There-

fore, if the point is made to trace any locus, the point P,

traces a similar figure to a scale m times as large.

The equation

Art. 74.— Confocal Conic Sections

1,
If

(1)
a^ -f- A 6' -f A

where a? > W represents an ellipse when A > — 6-, an hyperbola

when — a^ < A < — &^, an imaginary locus when A < — al The
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distance from focus to center of the ellii)se,s and liyperbolas

represented by eqiiation (1) is \(i' + \ — Ir — \\'- = {tC- — U')-.

Hence equation (1) when interpreted for different values of A.

in the same rectangular axes represents ellipses and hyperbolas

having common foci ; that is, a system of confocal conic sections.

Through every point {x', y') of the plane there passes one

ellipse and one hyperbola of the confocal system

a^ + A h' + X

For the conic sections passing through {x\ y') corresptmd to

the values of X satisfying the equation
..

1. (2)
a- + X b- + X

This function of A,

.^1^ +^ 1,
a- + A h- + X

is negative when A = + co,

positive just before A be-

comes — 6-, negative when

A is just less than — li'

and again positive when

A is just greater than — cr.

Hence equation (2) deter-

mines for A two values, one between + x and — h'-, the other

between — Jr and — a'.

The ellipse and hyperl)o]a of the confocal system

(t- -H A //- -f A

til rough the point (.c', //') intersect at right angles.

Let Ai and A. be the values of A satisfying the equation

X' +
a- + A h- + X

= 1. Then

+
a- + Ai &' -f Ai a- + X., U- + A.
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represent ellipse and hyperbola tlirougli (x-', y'). The tan-

gents to this ellipse and hyperbola at (x', y') are

iiy

a" + Ai h- + Ai

xx' yy'

a^ + A2 b^ + A2

(1)

(2)

From the equations

+ r7^^=l. -.-^^ +
a^ + Ai b- + \i a- + \2 b'' + X.,

is obtained by subtraction

(cr + Ai) (a' + \,) {b' + Aj) (6^ + A.)

which is the condition of perpendicularity of tangents (1)

and (2).

Since through every point in the plane there passes one ellipse

and one hyperbola of the confocal system, the point of the

plane is determined by specifying the ellipse and hyperbola in

which the point lies. This leads to a system of elliptic coordi-

nates.

If heat flows into an infinite plane disc along a finite straight

line at a uniform rate, when the heat conditions have become

permanent, the isothermal lines are the ellipses, the lines of

flow of heat the hyperbolas of the confocal system. The same

is true if instead of heat any fluid flows over the disc, or if an

electric or magnetic disturbance enters along the straight line.



CHAPTER XI

LINE OOOKDINATES

Art. 75. — Coordinates of a Straight Line

If the equation of a straight line is written in the form

ux -\-vy + 1 = 0, u and v are the negative reciprocals of the

intercepts of the line on the axes. To every pair of values of

H and V there corresponds one straight line, and conversely; that

is, there is a " one-to-one correspondence " between the symbol

(«, v) and the straight lines of the plane, u and v are called

line coordinates.*

If {u, V) is fixed, the equation ux -{- vy -\- 1 = expresses the

condition that the point {x, y) lies in the straight line («, v).

The system of points on a straight line is called a range of

points. Hence a first degree point equation represents a range

of points and determines a straight line.

If (x, y) is fixed, ux + vy + 1 = expresses the condition that

the line (», v) passes through the point (x, y). The system of

lines through a point is called a x^encil of rays. Hence a first

degree line equation represents a pencil of rays and determines

a point.

The equations ?/.ri + vy^ -|- 1 = 0, nx^ + vy., + 1=0 determine

the points {x^, y,), {x^, y^ respectively.
\
\\^'^ '\+^)

represents for each value of X one point of the line through

(a^i, ?/i), (.i\,, 7/2). X is the ratio of the segments into Avhich the

point corresponding to X divides the finite line from (.r„ y,) to

* riiickcr in Germany and Cliasles in France developed the use of line

coordinates at about the same time (1829).

149
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{x2, 2/2)- There is a " one-to-one correspondence " between A
and tlie points of the line throngh (a-j, y^, (.i-^, y^.

1-f-A 1 + A

which reduces to {ux^ + vy^ + 1) -|- A {ax^ + vy2 + 1) = 0, is the

line equation of the point A. Denoting m.Ti + vy^ -f 1 by L,

UX2 + v?/2 + 1 by 3f, L + \3I— represents the range of points

determined hy L = 0, 3£— 0.

The rays of the pencil determined by the lines

UiX + Viy + 1 = 0, ti.^x -\- v^y + 1 =

are represented by the equation

(u,x -f v,y + 1) + A (n.x + v-^y + 1) = 0,

which may be written '^!l±^x + !!l±J^ + 1 = 0.
•^ 1+A 1 + A

Hence
(n, + Xv v,±M::

V 1+A 1+A
are the lines of the pencil determined by (11^, Vi), (xi2, v^). There

is a " one-to-one correspondence " between A and the rays of

the pencil. Denoting UiX -[ Viy -\-l by P, u^x + Vjy + 1 by Q,

P + AQ = represents the rays of the pencil determined by
P=0, Q = 0.

'

Problems. — 1. Construct the lines (4, 1); (- 2, 5); (- i, -
J).

2. Construct the pencil represented by 3 ?i - 2 y ^- 1 = 0.

3. Construct the range represented by 2 .x — 3 ?/ -f 1 = 0.

4. Locate the point determined by 4 ?( -^ 5 v -|- 1 = 0.

5. Draw the line determined by 3x — 5 ?/ + 1 = 0.

6. Write the equation of the range of points determined by

2ti-Sv + l = 0, i?t-f^w-fl=0.

7. Write the equation of the pencil of rays determined by

2x-Sy + l=0, J a;-f i?/ + l = 0.
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Akt. 76.— Line Equatioxs of the Conic Sections

The equation of the tangent to the ellipse ^—^•-L^—l at
a- b-

(.T,,, y/o) is ^' + "''•'^ = 1. Comparing the equation of the tangent
a- U-

with nx + (•>) + 1 = it is seen that the line coordinates of the

tangent are a = — '

", i' = — ^", whence a-,, = — u-u, ?/„ = — Irv.

If the point of tangency (.Tn, ?/„) generates the ellipse "^ + ii — •'->

the tangent {ii, v) envelopes the ellipse. Hence the line equa-

tion of the ellipse, when the reference axes are the axes of the

ellipse, is a-ir + b'-v^ — 1.

Problems. — 1. Show that the Hue equation of the circle x"^ + y- — r"

is iC- + y- = —
r-

2. Show that the Hue eiiuatiou of the hyperbola

1 is d-xi- — b-v- = 1.

a- h-

3. Show that the Hue equatiou of the parabola y"^ = 2px is pv'^ = 2 u.

Construct the euvelopes of the equations

4. - + - = - 5. G. ifi-\- v"^ = ' 8. 9 1*2 - 4 u2 = i.
U V

5. uv-\. 7. 9!t2 + 4tj2-i, 9. 8i;2-u = 0.

Art. 77.— Cross-ratio of Four Points

The double ratio -^--.—^ is called the cross-ratio of the four
CB I)B

points A, B, C, D, and is denoted by the symbol (ABCB). If

the point A is denoted by

i = 0, the point B by J/= 0, > ^ »< ^

the points C and D respec-
^'"- '"

tively by L + XiM=Q and L + XoM^O, it follows that

^ = Ai, ^ = X,,, and (ABCD) = ^- Take any four points of
CB JJB Ao
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tlie range L + X3/= corresponding to Aj, X.,, A3, A4, and repre-

sent L + Aji)/ by Li, L + LM by i»/i, whence /v + A,,.1/ is

represented by L,-^^^M„ L + A,J/ by L, - ^i^il/-i.
Ao — A3 Ao — A4

The four points corresponding to Aj, A., A3, A4 are represented

by the equations

L, = 0, 3/1 = 0, A - ^^^^^^3/, = 0, A - ^i-^^1A = 0,
A2 — A3 A2 — A4

and their cross-ratio is
^^ ~ ^ -~ ^ Since the four points
^2 — X^Xi — A4

Ai, Ao, Ag, A4 can be arranged in 24 different ways, the cross-

ratio of four points takes 24 different forms, but these 24

different forms are seen to have only six different vaUies.

i-f A3/=0, L' + XM' = represent two ranges of points.

By making the point of one range determined by a value of

A correspond to the point of the other range determined by the

same value of A, a " one-to-one correspondence " is established

between the points of the two ranges, and the cross-ratio of

any four points of one range equals the cross-ratio of the corre-

sponding four points of the second range. Such ranges are

called projective.

Art. 78.— Second Degkke Line Equations

Remembering that each of the equations

L + \M=0, i'-fAJ/' =

for any value of A represents the entire pencil of rays through

the point of the range corresponding to A, it is evident that the

equation LM' — L'M= 0, obtained by eliminating A between

L + \M=^ 0, L' + AIT' = 0, represents the system of lines join-

ing the corresponding points of the two projective point ranges.

This equation is a second degree line equation, and it becomes

necessary to determine the locus enveloped by the lines repre-

sented by the equation.
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Let nx + vy + 1 = represent any i^oint (x, y) of the plane.

Writing the values of L, M, L', 31' in full, the elimination of

u and V from the equations i(x + t'^ + 1 = 0,

iixi + viji + 1 + X(ux2 + vyo + 1) = 0?

ux' + vy' + 1 + X(ux" + vy" + 1) = 0,

determines a quadratic equation in X with coefficients of the

first degree in (x, ?/), GX^ + HX + K= 0. To the two values

of X which satisfy this equation there correspond the tangents

from (x, y) to the envelope of LM' — VM— 0. When these

tangents coincide, the point (.r, ?/) lies on the envelope.

4 IP - GK^

causes the coincidence of the tangents, and is therefore the

point equation of the envelope. The point equation being of

the second degree, the envelope is a conic section.

The degree of a line equation denotes the number of tan-

gents that can be drawn from any point in the plane to the

curve represented by the equation, and is called the class of

the curve.

Art. 79.— Cross-ratio of a Pencil of Four Eays

Let a pencil of four rays,

P=0, Q = 0, P-|-X,Q = 0, P-fA,Q = 0,

be cut by any transversal in the four points A, B, C, D. j^ is

the common altitude of the triangles whose common vertex

is 0, and whose bases lie in the transversal. Then

i>
• CA = OA - OC • sin COA, p • DA = OA OD sin DOA,

p -03=00 -OB- sin COB, p - DB = OD • OB sin DOB,

and (ABCD) = ^"^ ^^^^ - ^"^^^^^
. This double sine ratio is

^ ^ sin COB sin DOB
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called the cross-ratio of the pencil of four rays. It is evident

that central projection does

not alter the cross-ratio of

four points in a straight

'PA \ "^^ line.

Writing the equation

P-|-XQ = in the com-

Q=0 plete form

u^x + i\y + 1

FiG' 138. and this in the form

the factor ^ll^ll+i^iX is seen to be the negative ratio of the

distances from any point of the line P + \Q = to the lines

P= 0, Q = 0. Hence

(7a_ sinC0^1 __. Da' ^ ^mPOA ^ ^
Cb sin COB " Db' sin DOB "

^
sinCO^^sin^DOA^Xi^^j^g

cross-ratio of the four rays
sin COB sin X)0i5 Xg

P^O, Q = 0, P4-AiQ = 0, P + X,Q = 0.

Representing

P+X,Q by Pi, P + XoQ by Q„ P-f-XgQ

is represented by

P^ _ k^A^ Q„ p + X.Q by P. -^^ Qi.

Xa — X3 Ao — A4

Hence the cross-ratio of the four points of the pencil P+XQ—0
, . , , - , 1 • Xi — Xi Xo — X)

corresponding to Xj, Xo, X;,, A4 is -^ —

•

X2 — A.3 Aj^ •— A4
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By making the ray of F+kQ = determined by a value of

\ correspond to the ray of F' +XQ' = determined by the

same value of X, a " one-to-one correspondence " is established

between the rays of the two pencils, and the cross-ratio of any

four rays of one pencil equals the cross-ratio of the correspond-

ing four rays of the other pencil. Such pencils are called

projective pencils.

The equation of the locus of the points of intersection of the

corresponding rays of the two projective pencils F + XQ = 0,

F' -t- XQ' = is FQ' — F'Q = 0. This is a second degree point

equation and represents a conic section.*

Art. 80.— Construction" of Projective Ranges and
Pencils

If there exists a " one-to-one correspondence " between the

points of two ranges, between the rays of two pencils, or be-

tween the points of a range and the rays of a pencil, the ranges

and pencils are projective.

Let F=0, Q= 0, determining the range or pencil F-}-XQ=0,

correspond to F^ = 0, Qi = 0, determining the range or pencil

Pi+ A,Qi = 0, and let a "one-to-one correspondence" exist

between the elements X of the first system and the elements

Ai of the second system. This "one-to-one correspondence"

interpreted algebraically means that Xi is a linear function

of X; that is, Xj = ^Jhj±A. By hypothesis, Xi = when X = 0,
' ' cX + d ^ ^^ ^ '

and X, = CO when X = cc, hence b = 0, c = 0, and X, = - X.

Let X = / and X, = /, be a third ])air of corresponding ele-

* A complete projective treatment of conic sections is developed in

Steiner's Theorie der Kcgelschnitte, 1800, and in Chasles' G^om^trie

Sup^rieure, 1852, and in Cremona's Elements of Projective Geometry,

translated from the Italian.
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ments;tlien - = -, Ai = -X, and the equations of tlie systems

P+XQ = 0, Pi + Ai(3i = become P + XQ = 0, IP^ + XI,Q,^0.

Now the elements of^
IF, + XIQ, =

are the elements of

P, + XQ, = 0,

hence the systems between

whose elements there exists a

'^ one-to-one correspondence "

are the projective systems

Fm. m P-{-XQ = 0, Pi + AQ, = 0.

This analysis also shows that the correspondence of three ele-

ments of one system to three elements of another makes the

systems projective.

Projective systems are constructed geometrically, as follows

:

Let the points 1, 2, 3 on one straight line mm correspond to

the points 1, 2, 3, respec-

tively, on another straight

line nn. Place the two

lines with one pair of

corresponding points 2, 2

in coincidence. Join the

point of intersection of

the lines through 1, 1 and

3, 3 with 2. Take the

3 points of intersection of

lines through with mm
and 7in as corresponding

points, and a " one-to-one correspondence " is established between

the points of the ranges mm, nn, which are therefore projective.

In like manner, if three rays 1, 2, 3 of pencil m correspond

to the rays 1, 2, 3, respectively, of pencil w, by placing the cor-

responding rays 1, 1 in coincidence, and drawing the line 00
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through the points of intersection of the corresponding rays

2, 2 and 3, 3, and taking rays from m and 7i to any point of 00

as corresponding rays, a " one-to-one correspondence " is estalv

lished between the rays of the two pencils, and the pencils are

projective.

Art. 81.— Coxic Section through Five Points

It is now possible by the aid of the ruler only to construct a

conic section through five points or tangent to five lines. Take

two of the given points 1, 2 as the vertices of pencils, the pairs

of lines from 1 and 2 to the remaining three points 3, 4, 5,

respectively, as corresponding rays of projective pencils. The
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intersections of these corresponding rays are points of the

required conic section.

Take tAvo of the five given lines 11 and 22 as bearers of point

ranges on which the points of intersection of the other lines

33, 44, 55 respectively are corresponding points. The line 00

is a common transversal of the pencils (11), (22). Hence

corresponding points of the projective ranges 11 and 22 are

located by the intersection with 11 and 22 of lines connecting

(11) and (22) respectively with any point of 00. The straight

lines connecting corresponding points are tangents to the

required conic section.

Notice that the construction of the conic section tangent to

five straight lines is the exact reciprocal of the construction of

the conic section through five points.

The figure formed by joining by straight lines six arbitrary

points on a conic section in any order whatever is called a six-
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7-f-\!(2)\4 .''5

point Taking 1 and 5 as vertices of pencils whose correspond-

ing rays are determined by the points 2, 3, 4, the points of

intersection of 16 with 11 and of 5iy with 55 must lie in the

same ray of the auxiliary pencil 0; that is, in any six-point of

a conic section the inter- ^i

section of the three pairs \ 1\

of opposite sides are in

a straight line. This is

Pascal's theorem.*

Reciprocating Pascal's

theorem, Brianchon's theo-

rem is obtained. — In the

figure formed by drawing

tangents to a conic section

at six arbitrary points in fig. u3.

any order whatever (a six-side of a conic section), the straight

lines joining the three pairs of opposite vertices pass through

a common point.f

By Pascal's theorem any number of points on a conic section

through five points may be located by the aid of the ruler ; by

Brianchon's theorem any number of tangents to a conic section

tangent to five straight lines may be drawn by the aid of the

ruler.

* Discovered by Pascal, 1040.

t Discovered by Brianclion, 180G.
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ANALYTIC GEOMETRY OP THE COMPLEX VAEIABLE

Art. 82.— Graphic Represextation op the Complex

Variable

The expression x + iij, where x and y are real variables and

i stands for V— 1, is called the complex variable, and is fre-

quently represented by z. Vx' + if is called the absolute value

of z and is denoted by
1
2;

|
or

|
a; + iy |.

If a; + iy is represented by the point (x, y), a " one-to-one

correspondence" is established be-

^x-^iy tween the complex variable x + iy

j

and the points of the XF-plane.

[

The X-axis is called the axis of

X \ reals, the F-axis the axis of imagi-

^ naries. Denoting the polar coordi-

FiG. 144. nates of (x, y) by r and 6, x= r cos 6,

y = r sine, and 2=x-+ «/=?• (cos ^+r sin ^), where r=Vo^+f,

6 = tan-^^. r is the absolute value, and 6 is called the anipli-

X
tude of the complex variable x + iy. Hence to the complex

variable x + iy there corresponds a straight line determinate

in length and direction. A straight line determinate in length

and direction is called a vector. Hence there is a " one-to-one

correspondence" between the complex variable and plane

vectors. As geometric representative of the complex variable

may be taken either the point (x, y) or the vector which deter-

mines the position of that point with respect to the origin.*

* Argand (1806) was the first to represent the complex variable by

points in a plane. Gauss (1831) developed the same idea and secured

for it a permanent i>lace in mathematics.

160
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Calling a liiu^ etiual in Icnii^'tli to the linear unit and laid olF

from the origin along the positive direction oi' the axis of reals

the uuit vector, the complex variable

z — X -\- i>i — r (cos 6 + I sin 6)

represents a vector obtained by multiplying the unit vector by

the absolute value, then turning the resulting line about its ex-

tremity at the origin through an angle equal to the amplitude of

the complex variable. When the

complex variable is written in

the form r(cos ^ + « sin(9), r is

the length of the vector,

cos 6 -}- i sin 9

the turning factor. In analytic

trigonometry it is proved that

cos 6 + i sin 6 = c'".* Hence the

complex variable r{vo9,e + i sin^)= r-c'^ whore the stretching

factor (tensor) and turning factor (versor) are neatly sc[)a,ratcd.

Problems. — 1. Locate the points rcpresmtud by 2 + t5; 3-i2;
- 1 + i2 ; i5 ;

- i4 ;
- 3 - i ;

- t 7 ; + i7.

2. Draw the vectors represented by 3 + i2; 1— i3; — 2+i3;
- 1 -i4; - i5 ; 3 -/; 1 + /.

3. Show that e-'"^' = 1, when n is any integer.

4. Show that r • e'(9+-"'^' represents the same point for all integral

values of n.
2nni

5. Locate the different points represented by e"^ for integral values

of n.
I(g+2n7r)

6. Locate the different points represented by 5 • e •« for integral

values of n.

*This relation was discovered by Eulcr (1707-1783).
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Akt. 83. — Arithmetic Operations applied to Vectors

The sum of two complex variables Xj + ii/i and X2 + iy2 is

(.I'l + X,) + / (^1 + //,) . Heuce

|(a-i + iyi) + (•'^•2 + ^'^2)1 = y/{xi + x^y+ivi + 2/2)',

and. the amplitude of the sum is tan"' -'' A The graphic
Xj ~|~ ^2

representation shows that the vector corresponding to the sum

^-rC^ + ii/) is found by constructing the vec-

' "" / tor corresponding to Xi + i?/i ^iid.

/ using the extremity of this vector

as origin of a set of new axes

w^ ^. parallel to the first axes to con-

struct the vector corresponding

^ to X2 + ^2/2• The vector from the

F'G- ^^6. origin to the end of the last vec-

tor is the vector sum. The vector sum is independent of the

order in which the component vectors are constructed. From

the figure it is evident that

I
{^1 + Wi) + {^2 + iVi)

I

> l-^'i + m\ + \^2 + il/2\-

The difference between two vectors x^ + iyi and Xo + iy^ is

(x^ — x.^+ i{yi — y^. The graphic representation shows that

the vector corresponding to the difference is found by construct-

ing the vector corresponding to x-^ + iyi and adding to it the

vector corresponding to — x.2 — iy-,- It is seen that

I

(x, + iy,) - {x. + iy^
|

= V(a-i - x.y- + (?/i
- y^,

the amplitude of the difference is tan-^
-^^' ~^^-

,
and that the

a-, - x.

equality of two complex variables requires the equality of

the coefficients of the real terms and the imaginary terms

separately.
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The product of two complex variables is most readily found

by writing these variables in the form r^ • e''^', r.^ • e'^^. The

product is i\r.2 • e''(«»+*2', showing that the absolute value of the

product is the product of the absolute values of the factors and

the amplitude of the product is the sum of the amplitudes of

the factors. Hence, writing the complex variables in the

form Ti (cos 6i + i sin ^i), n (cos 60 + i sin O.j), the product is

'V*2[cos (^1 + ^2)+ ^ sill (^1 + ^2)]? which of course can be shown

directly.

Construct tlie vector corresponding to the multiplier r, • e'^*

and join its extremity Pj to the extremity of the unit vector

01. Construct the vector corre-

sponding to the midtiplicand

7-2 • e'^% and on this vector OP., as

a side homologous to 01 construct

a triangle OP^P similar to OPjl

;

then OP is the product vec-

tor. For, from the similar tri-

angles 0P= Ti • r^, and the angle

XOP=6i+62- The product vec-

tor is therefore formed from the

vector which is the multiplicand

in the same manner as the vector which is the multiplier is

formed from the unit vector. The product vector is indepen-

dent of the order of the vector factors and can be zero only

when one of the factors is zero.

The quotient of two complex variables i\ • e''^', ?*2' e'^- is

'"1
. e'(9i 62) .

that is, the absolute value of the quotient is the quotient of the

absolute values, and the amplitude of the quotient is the ampli-

tude of the dividend minus the amplitude of the divisor.

Construct the vectors OP, and OPo corresponding to dividend

and divisor respectively, and let 01 be the unit vector. On
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OPi as a side homologous to 01\ construct the triangle OI\P

similar to OP^l, then OP is the quotient vector, for OP = -j

and the angle XOP is ^i — $2- The quotient vector is obtained

from the vector which is the dividend in the same manner as

the unit vector is obtained from the

vector which is the divisor.

Extracting the ??i root of

z = r • e'^ = r • e'f^+^'w)

there results z"^ = 9-™
. e ^ "»

Since n and m are integers,

Avhere q is an integer and r can have any value from to m— l.

<'^ + ^

Hence 2;"' = r™-e~'" "
; that is, the m root of z has m

values which have the same absolute value and amplitudes

differing by — beginning with —.*

Problems. — 1. Add (2 + 1 5) , ( - 3 + 1 2) , (5 - i 3).

2. Find the value of (3 - i2) + (7 + i4) - (0 - i3).

3. Find absolute value and amplitude of

(4-j.3) + (2 + i5)-(-3 + i4).

4. Construct (2 - i 3) x (5 + i 2) h- (4 - i 5)

.

5. Find absolute value and amplitude of (10 - i 7) x (4 - iS ).

6. Find absolute value and amplitude of (15 + f8) x (5 - i2).

7. Construct (2 + 1 3)3. 9. Construct (7 + i 4) ^

8. Construct (8 - 1 5)^. 10. Construct (9 - i 7) t.

* In mechanics coplanar forces, translations, velocities, accelerations,

and the moments of couples are vector quantities ;
that is, quantities

which are completely determined by direction and magnitude. Hence

the laws of vector combination are the foundation of a complete graphic

treatment of mechanics,
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11. Construct the five fifth roots of unity.

12. Construct the roots of 2- — 3 2 + f) = 0.

Put 2 = a; + ill. There results (x^ _ 2/2 - 3 x + 5) + t (2 xy - 3 ?/) = 0.

Plot ofl - y- - 3 X + 5 = and 2xy - Sy = 0. The values of z deter-

nihied by the intersections of these curves are the roots of z'^— 3 2 + 5=0.

AiiT. 84.— Algkp.raic Functions of thk Complex Variable

The geonietric representative of the real variable is the point

system of the X-axis and the geometric representation of a

function of a real variable 7/ = f(x) is the line into which this

function transforms the X-axis.

The geometric representative of the complex variable is the

point system of the XF-plane, and the geometric representation

of a function of a complex variable u + iv=f(x-\- i;/) is the

system of lines into which this function transforms systems of

lines in the XF-plane.

^
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If in the XF-plane a point moves in a parallel to the F-axis,

X is constant, and consequently u is constant. Hence the func-

tion 10 — z + c transforms parallels to the F-axis into parallels

to the F-axis in the f/F-plane. In like manner it is shown

that lo — z + c transforms parallels to the X-axis into parallels

to the {/-axis. If the variables to and z are interpreted in the

same axes, the function io = z + c gives to every point of the

XF-plane a motion of translation equal to the translation

which carries A to c.

When the complex variable is written in the form r • e'^, it is

convenient to use a system of concentric circles and the system

of straisfht lines throudi their common center. Take the func-

tion lu — c-z, when to stands for R • e'®, z for r • e'^ and c for

r' • e'« ; then R • e'® = rr' e'(«+e ^ and R = rr', © = 6 + 6'. If a

point in the XF-plane describes the circumference of a circle

center at origin, r is constant, and consequently R is constant,

and the corresponding point describes a circumference in the

C/F-plane, center at origin, and radius r' times the radius of

the corresponding circle in the XY-plane. If the point in the

XF-plane moves in a straight line through the origin, 6 is con-

stant, and consequently © is constant, and the corresponding
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p(iiiit in the CF-plane moves in a straight line through the

origin. If the variables w and z are interpreted in the same

axes X and Y, the function xo = c • z either stretches the XY-
plane outward from the origin, or shrinks it toward the origin,

according as r' is greater or less than unity, and then turns the

whole plane about the origin through the angle 0'.

R =
The function lo

1 ^

may be written R • e'® :

'^', whence
z r

A circle in the XF-planc with center at the

origin is transformed into a circle in the (/F-plane with center

at the origin, the radius of one circle being the reciprocal of

the radius of the other. A straight line through the origin in

V

the XF-plane making an angle 6 with the X-axis, is trans-

formed into a straight line through the origin in the t/F-plane

making an angle — Avith the {7-axis. If iv and z are inter-

preted in the same axes, the function lo =- is equivalent to a
z

transformation by reciprocal radii vectors with respect to the

unit circle, and a transformation by symmetry with respect to

the axis of reals.



168 ANALYTIC GEOMETRY

In the equation xv = z^, or R • e'® = ?-^ • e'''^, iv is a single

valued function of z, but 2 is a three-valued function of w.

Since r = i2% ^ = ® + ^^^, the absolute values of the three
3 3

values of z are the same, but their amplitudes differ by 120°.

The positive half of the (7-axis, ^ = 0, corresponds to the posi-

tive half of the X-axis, and the lines through the origin

making angles of 120° and 240° with the X-axis. The entire

C/F-plane is pictured by the function iv = z^ on each of the

three parts into which these lines divide the XF-plane.

Art. 85.— Generalized Transcendental Functions

Since z = x^ iy = r • 6'^^+""-', log z = log r + i{e + 2 mr). The

equation w = log 2 may be written u + iv = log ?•
-f- i (^ -f- 2 mr).

Y

V
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tion of IV. Tlie entire Xl'-plane is i)ictui'ed between any two

successive parallels to the C-axis at distances of 2 tt.

Writing the function ?o = sin (x + itj) in the form

u -\- IV = sin X cos iij + cos x sin iij,

and remembering that

cosh ?/ = 1 (e" + e *) = cos «//, sinh ?/ = i(e^' - 6-")= - i sin iy,

there results

M -j- iv = cosh ?/ sin .r — / sinh ?/ cos x,

whence

?t = cosh ?/ sin x, v = — sinh ?/ cos ^'j and sin x =
cosh u

cos a;= ^, cosh ?/=-r^, sinh^ =
sinh >j sm x cos xsma;

Substituting in sin-.v+cos-a;=l and cosh-.y-sinli-//= l, there

results

w V
1, — V = i-

cosh-?/ '

sinh'-^y sui^x cos-iK



170 ANALYTIC GEOMETRY

is obtained by assigning to x values from to 2 7r. Hence

v: = sin (x + iy) pictures that part of the XF-plane between

two parallels to the F-axis at a distance of 2 tt from each other

on the entire C/F-plane.*

Problems. — 1. Show that ?« = - transforms the system of straight
z

lines through a + ih, and the system of circles concentric at this point

into systems of orthogonal circles.

2. Find what part of the AT-plane is transformed into the entire

{/ ^''-plane by the function w = z"^.

3. Into what systems of lines does tp = cos 2; transform the parallels to

the X-axis and to the F-axis ?

*The geometric treatment of functions of the complex variable has

been extensively developed by Riemann (1826-G6) and his school.



ANALYTIC GEOMETRY OF THREE
DIMENSIONS

CHAPTER XIII

POINT, LINE, AND PLANE IN SPACE

Art. — Rectilinear Space Coordinates

Through a point in space draw any three straight lines not

in the same plane. The point is called the origin of coordi-

nates, the lines the axes of coordinates, the planes determined

by the lines taken two and two, the coordinate planes. The
distance of any point P from

a coordinate plane is meas-

ured on a parallel to that axis

which does not lie in the plane,

and the direction of the point

from the plane is denoted by

the algebraic sign prefixed to ^^^

the number expressing the dis- ___'

tance. The interpretation of

these signs is indicated in the

figure. If the distance and

direction of the point from the

yZ-plane is given, x — a, the ^'"- ''"*

point must lie in a determinate plane parallel to the J'Z-plane.

If the distance and direction of the point from the XZ-plane is

given, y = h, the point must lie in a determinate plane parallel

to the XZ-plane. If it is known that x = a and y = b, the

point must lie in each of two planes parallel, the one to the

171
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FZ-plane, the other to the XZ-plane, and therefore the point

must lie iu a determinate straight line parallel to the Z-axis.

If the distance and direction of the point from the XF-plane
2; = c is also given, the point must lie in a determinate plane

parallel to the XF-plaue and in a determinate line parallel to

the Z-axis ; that is, the point is completely determined.

Conversely, to every point in space there corresponds one,

and only one, set of values of the distances and directions of

the point from the coordinate planes. For through the given

point only one plane can be passed parallel to a coordinate

plane, a fact which determines a single value for the distance

and direction of the point from that coordinate plane.

The point whose distances and directions from the coordi-

nate planes are represented by x, y, z is denoted by the symbol

{x, y, z), and x, y, z are called the rectilinear coordinates of the

point. There is seen to be a "one-to-one correspondence"

between the symbol {x, y, z) and the points of space.

Observe that x = a interpreted in the ZX-plane represents

a straight line parallel to the Z-axis ; interpreted in the

XF-plane a straight line parallel to the F-axis ; but when
interpreted in space it represents the plane parallel to the

FZ-plane containing these two lines. The equations x = a,

y = b interpreted in the XF-plane represents a point ; inter-

preted in space they represent a straight line through this

point parallel to the Z-axis.

If the axes are perpendicular to each other, the coordinates

are called rectangular, in all other cases oblique.

Problems. — 1. Write the equation of tlie plane parallel to the rZ-plane

cutting the X-axis 5 to the right of the origin.

2. What is the equation of the FZ-plane ?

3. What is the locus of the points at a distance 7 below the XF-plane ?

Write equation of locus.

4. Write the equations of the line parallel to the X-axis at a distance

-f 5 from the XF-plane and at a distance - 5 from the XZ-plane.
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5. Write the equations of the origin.

6. What are the coordinates of the point on the Z-axis 10 below the

Xr-plane ?

7. What arc the equations of the Z-axis ?

8. What are the equations of a line parallel to the Z-axis ?

9. Explain the limitations of the position of a point imposed by

placing X = -I- 5, then y = — 5, then z — - 3.

10. Locate the points (2, - 3, 5); (- 2, 3, - 5).

11. Locate (0, 4, 5); (2, 0, - 3).

12. Locate (0, 0, - 5); (0, - 5, 0).

13. Show that (o, b, c), {-a, b, c) are symmetrical with respect to

the rZ-plane.

14. Show that («, b, c), (— «, — b, c) are symmetrical with respect to

the Z-axis.

15. Show that (a, b, c), (- a, - b, - c) are symmetrical with respect

to the origin.

Art. 87.— Polar Space Coordinates

Let (x, y, z) be the rectangular coordinates of any point F in

space. Call the distance from the origin to the point r,

the angle made by OP with its

projection OP' on the XF-plane

0, the angle made by the projec-

tion OP' with the X-axis <^. r,

(fi, 6 are the polar coordinates of

the point P. From the figure

OP' = r cos e,

X = OP' cos cf) = r cos 6 cos 4>,

y = OP' • sin ^ = r cos 6 sin (^,

z = r sin 6,

formulas which express the rec- /Y

tangular coordinates of any point ^"'' ^^'

in space in terms of the polar coordinates of the same point



174 ANAL YTIC GEOMETll

Y

From the figure are also obtained r ={x- + 9/ + z^)'^, sin^ =-,

tan 4>
=

'-, formulas which express the polar coordinates of any

point in space in terms of the rectangular coordinates of the

same point.

Problems. — 1. Locate the points whose polar coordinates are 5, 15°,

60"
; 8, 90°, 45^

2. Find the polar coordinates of the point (3, 4, 5).

3. Find the rectangular coordinates of the point (10, 30°, 60°).

4. Find the distance from the origin to the point (4, 5, 7).

Art. Distance between Two Points

Let the rectangular coordinates of the points be {x', y\ z'),

(x", y", z"). From the figure

If- = D" + (z' - z"y, D" = (x' - x"f + (?/' - y")\

hence (1 ) D' = {xJ - x"f + (ij' - ?/")- + (2' - z"f.

x' — x" is the projection of D on the X-axis; y' — y" the pro-

Z

^-v.,
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jection of D on the I'-axis; z' — z" the projection of D on the

^axis.* Calling the angles which B makes with the coordi-

nate axes respectively X, Y, Z,

x' — x" = D cos X, y' — y" = D cos Y, z' — z" = D cos Z.

Substituting in (1), there results

D- cos- X + D- cos- Y+ D- cos- Z = D%

whence cos- X + cos' Y+ cos- Z=l;

that is, the sum of the squares of the cosines of the three

angles which a straight line in space makes with the rectangu-

lar coordinate axes is unity.

The distance from (x', y', z') to the origin is Va;'" + y'^ + z'^.

If the point {x, y, z) moves so that its distance from {x', y', z')

is always R, the locus of the point is the surface of a sphere

and (x - x'Y + {y- y'-) + {z-z'f = Er, which expresses the

geometric law governing the motion of the point, is the equa-

tion of the sphere whose center is (x', y\ z'), radius R.

Problems. —1. Find distance of (2, - 3, 5) from origin.

2. Find the angles which the line from (3, 4, 5) to the origin makes

with the coordinate axes.

3. Find distance between points ( - 2, 4, - 5), (3, - 4, 5),

4. Write equation of locus of points whose distance from (4, - 1, 3)

is 5.

5. Write equation of sphere center at origin, (2, 1,-3) on surface.

6. The locus of points equidistant from (x', y', z'), (x", y", z") is the

plane bisecting at right angles the line joining these points. Find the

equation of the plane.

7. Find the equation of the plane bisecting at right angles the line

joining (2, 1,3), (4,3, -2).

* The projection of one straight line in space on another is the part of

the second line included between planes through the extremities of the

first line peri^endicular to the second. The projection is given in direc-

tion and magnitude by tlie product of the line to be projected into tlie

cosine of the included angle.
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8. Show that
y' + ir + z<

is the point midway be-

tween (x', j/', z')^ {%", y", z").

9. Find the point midway between (4, 5, 7), (2, — 1, 3).

10. Find the equation of the sphere wliich has the points (4, 5, 8),

(2, — 3, 4) at the extremities of a diameter.

11. Write the equation of the spliere with the origin on the surface,

center (5,0, 0).

12. Find angles which the line through (2, 3, - 5), (4, - 2, 3) makes

with the coordinate axes.

13. The length of the line from the origin to (x, ?/, z) is ?•, the line

makes with the axes the angles a, /8, 7. Show that x = rcosa, ?/ = rcos 3,

z = r cos 7.

Art. Equations of Lines in Space

Suppose any line in space to be given. From every point of

the line draw a straiglit line perpendicular to the XZ-plane.

There is formed the surface which projects the line in space

on the XZ-plane. The values of x and z are the same for all

points in the straight line which projects a point of the line

in space on the XZ-plane.

Hence the equation of the

projection of the line in

space on the XZ-plane when

interpreted in space repre-

sents the projecting surface.

The projection of the line in

space on the XZ-plane deter-

mines one surface on which

/Y the line in space must lie.

The projection of the line

in space on the I''Z-plane determines a second surface on

which the line in space must lie. The equations of the pro-

jections of the line in space on the coordinate planes XZ and
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YZ therefore determine the line in space and are called the

equations of the line in space. By eliminating z from tlie

equations of the projections of the line on the planes XZ and

YZ, the equation of the projection of the line on the XF-

plane is found.

Art. 90. — E(juATroNs of the STUAKiiix Link

iglit line on the

h «, y = bz + (3.

The equations of the projections of the sti

coordinate planes XZ and YZ are x = az

The geometric meaning of

a, b, a, fi is indicated in

the figure. The elimina-

tion of z gives

y-(3 = l{x-a),

the equation of the pro-

jection of the line in the

XF-plane.

Two points,

(x', y', z'), {x", y", z"),

determine a straight line

m space. The projection

of the line through the

points {x\ y,' z'), (x", y", z") on the ZX-plane is determined by

the projections (a;', z'), (x", z") of the points on the ZX-plane,

likewise the projection of the line on the ZF-plane is deter-

mined by the points {z', y'), (z", y"). Hence the equations of

the straight lines through {x', y', z'), (x", y", z") are

Fm. 159.

^-(z-z'), y-y' = -(z-z').

A straight line is also determined by one point and the direc-

tion of the line. Let {x', y', z') be one point of the line, «, /3, y

N
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the angles which the line makes with the axes X, Y, Z respec-

tively. Let {x, y, z) be any point

of the line, d its distance from

{x', y', z'). Then

z-x' ^y-y' ^z-z' ^_^
cos a cos 13 cos y

is the equation of the line. This

equation is equivalent to the equa-

tions x=x'+ d cos a, y=y'+d cos (3,

z = z' + d cos y, which express the

coordinates of any point of the line

in terms of the single variable d.

If the straight line (1) contains

the point (x", y", z"),

x"-x' ^ y"-y' ^ z" -z' ,

cos a cos /8 cos y

Eliminate cos a, cos (3, cos y from (1) and (2) by division, and

the equation of the straight line through two points is obtained

x — x' _ y — y' _ z — z'

x" — x' y" — y' z" — z'

as found before, a, (3, y are called the direction angles of the

straight line.

Problems. — 1. The projections of a straight line on the planes XZ
y z

Find the projection on the XY

- 5, ?/ = 2 2 — 3 with the coordinate

and YZ are 2 x + 3

plane.

2. Find the intersections of x

planes.

3. Write the equations of the straight line through (2, 3, 1), ( - 1, 3, 5)

.

4. Write the equations of the straight line through the origin and the

point (4, - 1, 2).

5. Write the equations of the straight line through (3, 1, 2) whose

direction angles are (60°, 45°, G0°).

6. The direction angles of a straight line are (45°, 60°, 60°)
; (4, 5, 6)

is a point of the line. Find the coordinates of the point 10 from (4, 5, 6).
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Akt. 91.

Let
X — a

cos «

Angle hetwkex Two Stuaigux Lines

Xy-b ^z~c
cos (i cos y

if

cos /8'cos a' cos li' cos y
be the straight lines. The angle between the lines is by definition

the angle between parallels to

the lines through the origin.

Let OM' and OM" be these

parallels through the origin.

From any point P'{x\ y\ z')

of OM' draw a perpendicular

P'P" to OM". Then OP" is

the projection of OP' on OM",
and OP" is also the projection

of the broken line {x'+ y' + z')

on OM".* Hence /
r' cos 6 = x' cos a' + y' cos ^'

+ Z' cos y,

= '-cos a -|-— cos
r' y'

+ -C0Sy
7

that cos = cos a COS a' + cos /3 cos (3' + cos y cos y'.

(1)

* The sum of the projections of

the parts of a broken line on any

straight Hne is the part of the line

included between the projections of

tlie extremities of the broken line.

a!) is the projection of AB ; be is the

projection of BC; ac is the projec-

tion of AB + BC.

Fio. 162.
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If the equations of the lines are written in the form

X = az + a, y — bz + (3] x= a'z + «',?/ = b'z + (3',

the equations of parallel lines through the origin are

X = az, y = bz ; x = a'z, y — b'z.

Let (x', y', z') be any point of the first line, its distance from

the origin r'. Then x' — az', y' — bz', r'? = x'- + y'^ + z'-, whence

cos a
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This eciuation requires that a = a', b = b' ; that is, if two lines

are parallel, their projections on the coordinate planes are

parallel.

The equations of the straight line through (x', ?/', z') parallel

to x=az + a, y==bz-{- ^ are a; — x'= a {z — z'), y ~ y' = b{z — z').

The straight line (1) x — x' = a'(z — z'), y — y' = b' {z — z')

through the point (x', y', z') is perpendicular to the straight line

(2) X = az + a, y = bz + ft
when a' and b' satisfy the equation

1 + cm' + bb' = 0. This equation is satisfied by an infinite

number of pairs of values of a' and b'. This is as it ought to

be, for through the given point a plane can be passed perpen-

dicular to the given line, and every line in this plane is perpen-

dicular to the given line, and conversely. Hence if the straight

line (1) is governed in its motion by the equation l + aa'-j-6^'= 0,

it generates the plane through (x', y', z') perpendicular to the

straight line (2). 1 -f aa' -\- bb' = is the line equation of the

plane.

To find the relation between the constants in the equa-

tions of two straight lines x = az + a, y = bz + ^, x = a'z + a',

y — b'z + /3', which causes the lines to intersect, make these

equations simultaneous and solve the equations of the projec-

tions on the XZ-plane, also the equations of the projections on

the I'Z-plane, for z. The two values of z, and ^^ ^
a — a' b — b'

must be equal if the lines intersect. Hence for intersection

the equation (a — a') (y8' — ft)
— (b — b') {a' ~ a) = must be

satisfied, and the coordinates of the point of intersection are

aa' — a'a bB' — b'B «' — a -.^r, ,
-,

x = , y = -^ -, z = When a = a and
a — a' b — b' a — a'

I) = //, the point of intersection is at infinity, and the lines are

parallel, as found before.

Problems. — 1. Find the angle between the lines

x = Sz + \, y = ~ 22 + 5; x = z + 2, y = - z + i.

2. Find the angle between the lines through (1, 1, 2), (-3, - 2, 4)

and (2, 1, - 2), (3, 2, 1).
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3. Find equations of line through (4, - 2, 3) parallel to a: = 4 2: + 1,

y = 2 z — b.

4. Find line through (1, - 2, 3) intersecting x = -2z-\-o, y=z + 5

at right angles.

5. Find distance from (2, 2, 2) to line x = 2 z -\- l, y = - 2 z + S.

6. Find equations of line intersecting each of the lines x = 3^ + 4,

y = -z + 2 and y = 2 z - 5, x - - z + 2 at right angles.

7. For what value of a do the lines x = Sz + a, y = 2z + 5 and

X = - 2 z - o, y = i z - d intersect ?

8. Find the equations of the straight line through the origin intersect-

ing at right angles the line through (4, 2, - 1), (1, 2, - 3).

9. Find distance of point of intersection of lines x = 2z-\-l,

y = 2z + 2 and x = z + 5, y-iz-6 from origin.

10. Find distance from origin to line x-iz-H, y = — 2z + 3.

Art. The Plane

A plane is determined when

the length and direction of the

perpendicular from the origin

to the plane are given. Call

the length of the perpendicular

p, the direction angles of the per-

pendicular a, (3, y. Let P(.i-, ?/, z)

be any point in the plane. The

projection of the broken line

(;f + y + z) on the perpendicular

OP' equals p for all points in the

plane and for no others. Hence

xcosa + y cos /8 + 2: cos y = p is

the equation of the plane. This

is called the normal equation of

the plane.

Every first degree equation in three variables when inter-

preted in rectangular coordinates represents a plane. The
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locus reprostMiiod by Ax + B>i + Cz + D = is the same as

the locus represeuted by u;cos a + ij (ios fi + z cos y - 2' = ^ i^'

Con
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For points in the intersection of the planes

Ax + By+Cz + D = and A'x + B'y + C'z-\-D' =

these equations are simultaneons. Eliminating >j,

{AB' - A'B)x + (CB' - C'B)z + {DB - D' D) = 0,

the equation of the projection of the intersection on the co-

ordinate plane XZ. In like manner the equations of the pro-

jections of the intersection on the planes YZ and XF are

obtained.

Problems. —1. Write the equation of the plane whose intercepts on the

axes are 2, — 4, — 3.

2. Find the equation of the plane through (2, - 3, 4) perpendicular

to the line joining this point to the origin.

3. Find the equation of the plane through (2, 5, 1), (3, 2, -5),

(1, -3,7).

4. Find the equations of the traces of3a;-?/ + 5z— 15 = 0.

5. Find the equations of the intersection of Sx + by ~ 7 z + 10 = 0,

bx -Utj + Sz - lb = 0.

6. Find the equation of the plane through (3, - 2, 5) perpendicular to

a: -1 _ ?/ + 2 _ g - 3

cos GO'^ cos 45"^ cos G0°

n. Find the direction angles of a perpendicular to the plane

2x-3?/+52 = 6.

8. Find the length of the perpendicular from the origin to

2x-3y + bz=^G.

Art. 93.— Distance from a Point to a Plane

Let (x', y\ z') be a given point, cc cos « + 2/ cos ^ + 2 cos y =i>,

a given plane. Through {x\ y', z') pass a plane parallel to the

given plane. The equation of this parallel plane is

a; cos « -h 2/ cos ^ + » cos y = OF".



POINT, LINE, AND PLANE IN SPACE m
The point (x', y', z') lies in this plane, therefore

x' cos a + y' cos ^ + 2' cos y = OP".

Subtracting OP from both

sides of this equation,

x' cos a + y' cos fi

-f- z' cos y — i^ = P-P"

;

that is, the perpendicular

distance from (x', y', z') to

xcosa + y cos (3

+ 2 cos y — p =
is the left-hand member of

this equation evaluated for

(x', y', z'). The sign of the

perpendicular is plus when

the origin and the point

(x', y\ z') are on different

sides of the plane, minus

when the origin and the
, /,,,. jl 1' 1(1. K«.

point (a;
,
y', z) are on the

same side of the plane.

The distance from {x', y', z') to the plane Ax-\-By+Cz-\-D=0

is found by transforming the equation of the plane into the

form X cos a -{- y cos 13 + z cos y — j? = to be

Ax' + By' + Cz' + D

Let .Tcos a-\-y cos /? + 2: cos y — p = and

X cos «' -f ?/ cos )8' -f 2 cos y' — ;y =

bo the faces of a diedral angle,

(.« cos «+?/ cos ^+2;cos y—^))±(.); cos «'+?/ cos ^'+ z cosy'—p')=0

is the equation of the locus of points equidistant from the

faces: that is, the eipiation oC the bisectors of the diedral

angle.
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Problems. — 1. Find distance from origin to plane

Ux-13y+nz + 22 = 0.

2. Find distance from (3, - 2, 7) to 3 a; + 7 ?/ - 10 s + 5 = 0.

3. Write the equations of the bisectors of the diedral angles whose

faces are 2 X + 5 y — 7 z = 10, and ix-y + Gz — l!i = 0.

4. Find distance from (0, 5, 7) to - + | + ? = 1.

5. Find distance from origin to | ce — | ?/ -| | ^ = 1-

Art 94.— Angle between Two Planes

Let a; cos a -\- y cos^+z cos y=2^, a; cos «'+?/cos^'+2:cosy'=jy

be two given planes, their included angle. The angle be-

tween the planes is the angle between the perpendiculars to

the planes from the origin. Hence

cos 6 = cos a cos a' + cos (3 cos ^' -\- cos y cos y'.

If the equations of the planes are in the form

Ax + B>j + Cz + D = 0, A'x + B'y + C'z + Z)' = 0,

cos a = —

>

V.4^ + B'+ C
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The angle between the plane xcos a -\->/ con f3 + zcosy =p
y ~ •' =z

~ '^

is the conipUnnent of the
cos «' cos /8' cos y'

angle between the line and the perpendiculai- to the plane.

Hence sin 6 = cos a cos a' + cos ft cos /3' + cos y cos y'. If the

equations of line and plane are in the form x = az + «,

y = hz + p, and Ax + By -\- Cz-{- D = 0,

cos a =
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If the plane Ax-\- By + Cz-\- D = contains the point

(x', y', z') and the line x = az + a, y = bz-{-^,

Ax' + By' + Cz'+D = 0, Aa -\- Bb + C= 0, Aa + B(3-\-D = 0.

These equations determine the relative values of A, B, C, D,

hence the plane is determined.

The plane Ax + By -{- Cz + D = contains the two lines

X = az + a, y = bz + (^ and x = a'z + a', y = b'z + (3' when
Aa + Bb-^C^O, Aa + Bf3 + D^0, Aa' + Bb' + C^O,
Aa' + B/3' + D =0. These four equations are consistent only

when — — '^^'^
that is, when the lines intersect, and

b—b' /? — /3

then the relative values of A, B, C, D, which determine the

plane, are found by solving any three of the four equations.

Problems. — 1. Find angle between planes 10 x — 3 y + 4 £• + 12 = 0,

15 X + 11?/ -7 2 + 20 = 0.

2. Find angle between line x = 5 z + 7, y = S z — 2, and plane

2x- 15?/ + 200 + 18=0.

3. Find equation of plane through (4, — 2, 3) parallel to

3x-2y + z- 5 = 0.

4. Find equation of plane through (1, 2, — 1) containing the line

x = 2z — S, y = z + a.

5. Find equation of line through (4, 2, — 3) perpendicular to

x + Sy -2z + 4 = 0.

6. Find equation of plane containing the lines x= 2z+ \, y= 2z + 2,

and x = z + 5, y = 4:Z — G.

7. Find angles which Ax + By + Cz + D = makes with the coordi-

nate axes.

8. Find angles which Ax + By + Cz + D = makes with the coordi-

nate planes.

9. Show that if two planes are parallel, their traces are parallel.

10. Show that if a line is perpendicular to a plane, the projections of

the line are perpendicular to the traces of the plane.
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11. Show that ^ ~ ^' = ^''s:Jl!. = ?-IiA is perpendicular to
A B C

Ax + ny + a:: + D = 0.

12. Show that (x>-x"){x-x") + (7j' -y")(>/~y") + (z' -z")(:-z")=0

is a plane through (x", y", z") perpendicular to the line through

(x', y\ z') and (x", y", z").

13. Find the equation of the plane tangent to the sphere x^+ y'^+z'^— R-

at the point (x", y", z") of the surface.

14. Find the equation of the plane tangent to the sphere

(X - X')- + (2/ - y'y + {s- z'Y = R-

at the point (x", y" , s") of the surface.



CHAPTER XIV

OUKVED SURPAOES

trix of a cylindrical surface

Z

Art. 95.— Cylindrical Surface.s

Let the straight line x = az + a, y = bz -\- (3 move in such a

manner that it always intersects the XF-plane in the curve

F(x, y) = 0, and remains parallel to its first position. The

straight line is the generatrix, the curve F{x, y)=0 the direc-

The generatrix pierces the

XF-plane in the point («, (3),

and therefore F(a, (3)^0.

This is the line equation of

the cylindrical surface, for

since a and b are constant, to

every pair of values of a and

13 there corresponds one posi-

tion of the generatrix, and

to all pairs of values of a

and 13 satisfying the equation

F(a, 13)=0 there corresponds

the generatrix in all positions
*''*" '^^^-

while generating the cylindri-

cal surface. To obtain the equation of the cylindrical sur-

face in terras of the coordinates of any point (.r, y, z) of the

surface, substitute in F{(z, /8)=0 the values of a and ^ ob-

tained from the equations of the generatrix. There results

F(:x-az, y-bz)=0, the equation of the cylindrical surface

whose directrix is F(x, y)= 0, generatrix x=az-\-a, y=bz+ (3.

190
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+ ^ = 1. What does this equation become when elements are parallel
6-

ele-

Problems. — 1. Find the equation of the right circular cylinder whose

directrix is x- + y~ — f-, and axis the Z-axis.

2. TIic directrix of a cylinder is a circle in the A'l'-plane, center at

origin. The element of tlie cylinder in the ZA'-plane makes an angle of

45° with the A'-axis. Find equation of surface of cylinder.

3. Find general equation of surface of cylinder whose directrix is

X-
, y^

to Z-axis ?

4. Find equation of cylindrical surface directrix y- — \(ix

ments parallel to x = 22 + 5, ?/= — 3^ + 5.

5. Determine locus represented by

a; = a sin </>, y = a cos 0, z = r(p.

Since x- + y- = a-, the locus must lie on

the cylindrical surface whose axis is the

Z-axis, radius of base a. Points corre-

sponding to values of (p differing by 2 tt lie

in tlie same element of the cylindrical sur-

face. The distance between the successive

points of intersection of an element of the

cylindrical surface with the locus is 2 wc.

The locus is tlierefore the thread of a cylin-

drical screw with distance between threads

2 TTC. The curve is called the helix.

Art. 96.— Conical Surfaces

Let the straii^^ht lino x = az -f «, y = hz + (i move in such a

manner that it always intersects the XT-plane in the curve

F(x, ?/) = 0, and passes through the point {x\ ?/', z'). The

straight line generates a conical surface whose vertex is

(:r', ?/', z'), directrix F{x, y)= 0. The equations of the generatrix

are x — x' = a(z — z'), y — ?/' = h{z — z'), which may be written

x=az-{-{x'—az'), y=bz-{-(y'—hz'). This line pierces the XY-
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plane in {x'— az\ y'— bz'), and therefore F(x'—az', y'— bz')=0.

This is the line equation of the

conical surface, for to every pair

of values of a and b there corre-

sponds one position of the gen-

eratrix, and to all pairs of values

of a and b satisfying the equa-

tion F(x'— az', y'—bz)= there

corresponds the generatrix in all

positions while generating the

conical surface. To obtain the

equation of the conical surface

in terms of the coordinates of

any point (x, y, z) of the surface,

substitute in F(x' — az', y' — bz')= for a and b their values

obtained from the equations of the generatrix. There results

j^rx'z - xz' y'z-yz'\^ ^^^ equation of the conical surface
\ z — z' z~z' J

whose vertex is (x', y', z'), directrix F(x, y) = 0*

Problems.— 1. Find the equation of the surface of the right circular

cone whose axis coincides with the Z-axis, vertex at a distance c from tlie

origin.

2. Find the equation of the conical surface directrix ^ + l^= 1, ver-

tex (5, 2, 1).

3. Find the equation of the conical surface vertex (0, 0, 10), directrix

2/2 = 10 X - x~.

4. Find the equation of the conical surface vertex (0, 0, c), directrix

^ + ?^'=1.

5. Find the equation of the conical surface vertex (0, 0, 10), directrix

a;'^ + 2/2^0.

* Surfaces which may be generated by a straight line are called ruled

surfaces.
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Art. 97. — Sukkacks ok Kkvolution

Let 3fN be any line in the ZX-plane. When MN revolves

about the Z-axis, every point /* of JfiV deseribes the circumfer-

ence of a (drcle witli its center

on the Z-axis and whicli is pro-

jected on the XF-plane in an

equal circle. The equation of

the circle referred to a pair of ('

axes through its center parallel

to the axes X and Y is

or -j-y- = t^.

This is also the equation of the

})rojectiou of the circle on the

Xl''-})lane. The radius r is a

function of z whicli is given by

the equation of the generatrix r = F(z). Hence the equation

of the surface of revolution is obtained by eliminating /• from

the equations af' + y- — r' and r = F(z).

Problems. — 1. Find equation of surface of sphere, center at origin,

radius li. This sphere is generated by the revolution about the Z-axis of

a circle whoso e(iualion is r~ + z- = R-. Eliminate r from this equation

and x- -|- y- — ?•-, and the ecpiation of the sphere is found to be

X-' -f if -V Z'^:= R\

2. Find equation of right circular cylinder vyliose axis is the Z-axis.

3. Find equation of right circular cone whose axis is Z-axis, vertex

(0, 0, c).

4. Find equation of right circular cone whose axis is Z-axis, vertex

(0, 0, 0).

5. Find equation of surface generated by revolution of ellipse about its

niajiir axis. This is the prolate spheroid.

6. Find ((juation of surface generated by revolution of ellipse about its

minor axis. This is the oblate spheroid.

o
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1. Find equation of surface generated by revolution of hyperbola about

its conjugate axis. This is the hyperboloid of revolution of one sheet.

8. Find equation of surface generated by revolution of hyperbola about

its transverse axis. This is the hyperboloid of revolution of tv?o sheets.

9. Let PP' be perpendicular

to the JT-axis, but not in the

ZX-plane. Suppose PP' to re-

volve about the Z-axis. The

equation of the surface gener-

ated is to be found.

The equations of the projec-

tions of PP' on the planes ZX
and ZY are x= a.,y= bz. The

point P describes the circum-

ference of a circle whose equa-

tion is x2 + ^2 _ ,.2. The value

i of r depends on z, and from the
^^«- 1'^"-

figure r''= a?+ Vh'K Hence

the equation of the surface generated is x- + y'^ = &%- -f a'-. The surface

is thei'efore an hyperboloid of revolution of one sheet.

Akt. The Ellipsoid

In the XF-plane there is the fixed ellipse ^-f--^ = 1, in the
.2 2

«' ^

ZX-plane the fixed ellipse - + -" = 1. The figure generated
a- c-

by the ellipse which moves with

its center on the X-axis, the plane

of the ellipse perpendicular to the

X-axis, the axes of the ellipse in

any position the intersections of

the plane of the ellipse Avith the

fixed ellipses, is called the ellip-

soid. The equation of the ellipse

From the equations of the fixed ellipses
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— +--= 1, —+ --=1, whence rs =lrll- \,rt—c-(l ]•

a- b- a- c- \ a-j \ a-j

Hence tlie equation of the generating ellipse in any position,

that is, the e(uiation of the ellipsoid, is — + 4, + —, = 1- When
(r b- &

a, b, c arc unequal, the figure is an ellipsoid with unequal

axes; when two of the axes are equal, the figure is an ellipsoid

of revolution, or spheroid; Avhen the three axes are equal, the

elli[)soid becomes the sphere.

Art. The Hyperboloids

In the ZX-plane there is the fixed hyperbola ——r,
= 1, in

the Zl'plane the fixed hyperbola ^ — ^,

cr

1. The figure gen-

Zcrated by the ellipse which

moves with its center on

the Z-axis, the plane of the

ellipse perpendicular to the

Z-axis, the axes of the el-

lipse in any position the

intersections of the plane

of the ellipse with the fixed

hyperbolas, is called the

hyperboloid of one sheet.

The equation of the ellipse Fig. i7t.

1. From the equations of the fixed hyperbolas
rs' rt

ri _?'=:!, ^-^=1, whence ^s'=a-(l + '^, 7r=b'(l+''\
rr c- b' c-

'

\ c-J \ c-J

Hence the equation of the generating ellipse in any posi-

tion, that is, the equation of the hyperboloid of one sheet, is

a- b- c- yS ^2

In the ZX-plane there is the fixed hyperbola —

—

= ^^
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in the XT-plane the fixed hyperbola — — ^-=^1. The figure
a^ h-

generated by the ellipse which moves with its center on the

X-axis, the plane of the el-

^ ''
lipse perpendicular to the

X-axis, the axes of the el-

lipse in any position the in-

tersections of the plane of

the ellipse with the fixed

hyperbolas, is called the

hyperboloid of two sheets.

The equation of the ellipse

is ^ + |r,= l- Fi'oi^ tlie

Fig. 172.
'>'^ ^'^

9 —2 o -p

equations of the fixed hyperbolas — — -—-=1, — -^—^1

whence ri^h'{-^-\\, '^V^ (?(^^-\\. Hence the equation

of the generating ellipse in any position, that is, the equation

of the hyperboloid of two sheets, is —

Art. 100.— The Paraboloids

In the XF-plane there is the fixed parabola -if'
— 2 hx, in the

ZX-plane the fixed parabola z^=2 ex. The figure generated

by an ellipse which moves with its

center on the X-axis, its plane per-

pendicular to the X-axis, the axes

of the ellipse in any position the

intersections of the plane of the

X ellipse with the fixed parabola, is

called the elliptical paraboloid. The

equation of the ellipse is

rs rt
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From the equations of the fixed paraboUis rs' = 2 bx, rt = 2 ex.

Hence the equation of the generating ellipse in any position,

that is, the e(iuation of the elliptical paraboloid, is •—-{— = 2x.
b c

In the ZX-plane there is the fixed parabola 2- = 2 ex, in

the Xl'-plane the fixed parabola y^— — 2bx. The figure gener-

ated by an hyperbola which

moves with its center on the

X-axis, the plane of the hy-

])erbola perpendicular to the

X-axis, the axes of the hy-

l)erbola the intersections of

the plane of the hyperbola

with the fixed parabolas, is

called the hyperbolic para-

boloid. The equation of the

hyperbola is

= 1.
z' _ y
rs rt'

From the equations of the

fixed parabolas rs = 2 ex,

ri'=—2bx. Hence the equa-
FiG. 174.

tion of the generating hyper

bola in any position, that is, the equation of the hyperbolic

paraboloid, is —=2x.
c b

Art. 101, —The Conoid

The center of an ellipse moves in a straight line perpendicu-

lar to the plane of the ellipse. The major axis is constant for

all positions of the ellipse, the minor axis diminishes directly

as the distance the ellipse has moved, becoming zero when the
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ellipse has moved the distance c. The figure generated is called

the conoid with elliptical base.

The equation of the ellipse is

y-

where

4-^^— 1
-:: ^ —2

— -^'

s rt

a, and, from similar

z
triangles, — = -, whence rt

b c

-(c — z). The efjuation of the
c

generating ellipse in any posi-

tion, that is, the equation of the

conoid, is
lP{c

Art. 102. Surfaces represented by Equations in

Three Variables

An equation ffi{x, ?/, z)=0, when intei-preted in rectangular

space coordinates, represents some surface. For when z is a

continuous function of x and y, if (x, y) takes consecutive posi-

tions in the XF-plane, the point {x, y, z) takes consecutive

positions in space. Hence the geometric representation of the

function </> (x, y, «)= is the surface into which this function

transforms the XF-plane. To determine the form and dimen-

sions of the surface represented by a given equation, the inter-

sections of this surface by planes parallel to the coordinate

planes are studied.

Problems. — Determine the form and dimensions of the surfaces rep-

resented by the following equations.

1. E--|-^-)- ^2— \ Tiie equation of the projection on the Xr-plane
9 4

of the intersection of the surface represented by this equation and a plane

g = c parallel to the AT-plane is ^ + ^ = 1 - c-. This equation repre-
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sents an ellipse whose dimensions are greatest when c = 0, diminish as the"

numerical value of c increases to 1, and are zero when c = ± 1. The
ellipse is imaginary when c is numerically greater than 1.

The equation of the projection on the ZA'-plane of the intersection of

the surface by a plane tj = b parallel to the ZX-plane is —\- z'^= I — —
9 4

which represents an ellipse whose dimensions are greatest when ft = 0,

diminish as b increases numerically to 2, are zero when ft = ± 2, and

become imaginary when ft is numerically greater than 2.

The equation of the projection on the TZ-plane of the intersection of

the surface by a plane x a parallel to the FZ-plane is ^ + 2^

4

a2

which represents an ellipse whose

dimensions are greatest when a = 0,

diminish as a increases numerically

to 3, are zero when a = ± 3, and be-

come imaginary when a is numeri-

cally greater than 3.

The sections of the surface made
by planes parallel to the coordinate

planes are all ellipses, the surface is

closed and limited by the faces of

the rectangular parallelopiped whose

faces are x — ±S, y = ±2, z = ±1.
From the equation it is seen that the origin is a center of symmetry, the

coordinate axes are axes of symmetry, the coordinate planes are planes of

symmetry of the surface. The figure is the ellipsoid with axes 3, 2, 1.

0.

10x = 0.

Fig. 176.

X- + 2/-^ - z^

x"^ + >j- + z"^

r/ + z^

X2 + J/2
.

10x = 0.

^2:^1.

z' - 2 X + o !i

j2 + 2 X + 4 i' :

12. Show that the conoid is a

ruled surface.
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SECOND DEGEEE EQUATION IN THKEE VAEIABLES

Art. 103.— Transformation of Coordinates

Take the point (a, b, c) referred to the axes X, Y, Z as the

origin of a set of axes X', Y', Z' parallel to X, Y, Z respec-

tively. Let (.r, y, z), {x', y', z') represent the same point referred

to the two sets of axes. From the figure x = x' + a, y = y'-\-b,

z = z' -\- c.

z'

Let X, F, Z be a set of rectangular axes, X\ Y\ Z any set

of rectilinear axes with the same origin. Denote the angles

made by A'' with A, F, Z by a, (3, y respectively, the angles

made by Y' with A, Y, Zhj a', y8', y', the angles made by Z'

with A, Y, Z by a", j8", y". If (a-, y, z) and (x', y', z') represent

the same point F, x is the projection of the broken line

200
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(x' + If' + z') on tlio X-axis, y the projection of this broken line

on the i'-axis, z the projection of this broken line on the

Z-axis. Hence
X = x' cos a -\- ?/' cos a' + z' cos a",

y = x' cos f^ + ?/' cos /3' + z' cos /3",

Z = x' COS y -f- )/' COS y' + ;<;' cos y".

Since X, F, Z are rectangular axes,

cos^ a + cos^ /? + cos^ y = 1

,

COS-«'+ C0S-/5'+ COS-y' = 1,

cos^«" + cos-;8"-f cos^y" = 1.

If X', I"', Z' are also rectangular,

cos a cos a' -f cos ft cos /?' + cos y cos y' — 0,

cos « cos a" + cos /3 cos (3" + cos y cos y" = 0,

cos a' cos «" -f cos
ft'

cos /3" + cos y' cos y" = 0.

Problems. — 1. Transform x- + y^ + z- = 2G to parallel axes, origin

(-5,0,0).

2. Transform x- + 7j- + z- = 25 to parallel axes, origin ( — 5, - 5, — 5).

3. Transform ^ + ^ -f
IT = 1 to parallel axes, origin ( - a, 0, 0).

a'^ b- c^

4. Show that the first degi-ee equation in three variables interpreted

in oblique coordinates represents a plane.

5. Show that the equation of an elliptic cone, vertex at origin, and
3.2 y2 5-2

axis the Z-axis, is ~ + ^— — = 0.
'

a^ 62 c-i

6. Derive the formulas for transformation from one rectangular sys-

tem to another rectangular system, the Z'-axis coinciding with the Z-axis,

the X'-axis making an angle d with the A'-axis.

Art. 104.— Plane Section of Quadric

Surfaces represented by the second degree equation in throe

variables

Ax"^ + By- + Cz- + 2 Dxy + 2Exz + 2 Fyz
* ^2Gx + 2Hy + 2Kz + L = (1)

are known by the general name of quadrics.
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To find the intersection of the surface represented by this

equation by any plane transform to a set of axes parallel to

the original set, having some point (a, b, c) in the cutting plane

as origin. The transformation formulas are

x = x' -\-a, y = y' -\- b, z = z' -\-c,

and the transformed equation is

Ax'' + By'' + Cz" + 2 D'x'tj' + 2 E'x'z'

+ 2 F'y'z' + 2 G'x' + 2 H'y' + 2 K'z' + L' = 0, (2)

where G' = .la + Db + Ec + G,

H' = Bb + Da + Fc + H, K' = Cc + Ea + Fb + K,

L' = Aa' + Bb- + Cc- + 2 Dab + 2 Eac

+ 2 F6c + 2 (^a + 2 /f& + 2 /ic + L.

Now turn the axes X', Y', Z' about the origin until the

X' F'-plane coincides with the cutting plane. This is accom-

plished by the transformation formulas

x' = Xi cos a + ?/i
cos «' + Zi cos a",

y' = Xi cos y8 + v/i cos /5' + ^1 cos |8",

2' = .Tj cos y + ?/i
cos y' + 2:1 cos y".

These formulas are linear, hence the equation of the quadric

in terms of {x^, y^, Zj) is of the form

A,x,' + B,y,' + C,z,' + 2 D,x,y, + 2 E,x,z,

+ 2 jPj^^i^i + 2 (^^.Ti + 2 if,y, + 2 /r.^i + Xi = 0. (3)

Since the plane of the section is the Xj^Vplane, the equa-

tion of the intersection referred to rectangular axes in its own

plane is A.x^' -f JB,2/i' + 2 D.x.y^ + 2 G,x, + 2 H,y, + L,= 0,

which represents a conic section. Hence every plane section

of a quadric is a conic section. For this reason quadrics are

also called conicoids.
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Art. 105.— Ckxtku of Quadric

The surface represented by eq\iation (2) is symmetrical with

respect to the origin (a, b, c) wlien the coefficients of x', y', z'

are zero, for then if {x\ y', z') is a point of the surface,

(-•< -y', -2')

is also a point of the surface. Hence the center of the quadrie

(1) is found by solving the equations

Aa+ Db + Ec + G = 0, Bb + Da + Fc + 11 = 0,

and Cc + Ea + Fb + K= 0.

Problems. — 1. Find the center of the quadrie represented by

a:2 + ?/2 ^ 4 ^2 _ 8 a;5: + 2/ = 0.

2. Find the center of the quadrie represented by

.r2 - 2/2 4- 2;2 - 10 X + 8 2 + 15 = 0.

Art, 106.— T.vxgent Plane to Quadric

Let (.To, ?yo> 2:0) be any point of the quadric (1). The equa-

tions cc = .To + d cos (it.,y =
?/o + d cos p,z = Z(i-\- d cos y represent

all straight lines through (.t,„ ?yo> ^^- By substituting in (1)

=+ ^aV
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an equation is found which determines the two values of d
corresponding to the points of intersection of straight line and

quadric. Since the point (a^o, yo, z^) lies in the quadric, the

term of this equation independent of d vanishes. If the co-

efficient of the first power of d also vanishes, the equation has

two roots equal to zero ; that is, every straight line through

the point (;Xq, ?/„, ^o), and whose direction cosines satisfy the

equation

A cos a • x^+B cos (3 • ?/o+ C'cos y • z^,-\-D cos a •
?/(,+ Z) cos /5 • .Tq

-f^cosy • Xo+Ecosa Z(t-\-Fcosy y^+Fcos/B • Zq

-f GrCos« + HcosfS -f A'cos y =

is tangent to the quadric. To determine the surface repre-

sented by this equation multiply by d and substitute x — Xq for

d cos a, y — ?/o for dcos (3, z — z^ for d cos y. There results the

equation

AxX(, + Byyo -f Czz^ + D (;xy^, + x^y) + E (xz^ + x^)

+ F(yZo + y,z) + G(x + x^) + H{y + y,) + K{z -f ^o) + ^ = 0,

which, since it is of the first degree in {x, y, z) represents a

plane. This plane, containing all the straight lines tangent to

the quadric at {xq, y^, Zq) is tangent to the quadric at (.Tu, ?/„, z^^.

Notice that the equation of the plane tangent to the quadric at

(xq, yo, Zq) is obtained by substituting in the equation of the

quadric xxq for x^, yy^ for y^, zz,, for z^, xy^ + x^y for 2 xy,

xZq + X(^ for 2 xz, yzo -f- y^z for 2yz, x -\- x^ for 2x, y -\- y^ for 2 y,

z + Zq for 2 z.

Let (x', y', z') be any point in space, (x^, yo, Zq) the point of

contact with the quadric (1) of any plane through (x', y', z')

tangent to the quadric. Then (Xq, y^, z^, (x', y', z') must satisfy

the equation

.4.r'.T„ + By'yo + Cz'z^ -f D (x'y, + ?/'a'„) -f ^(^'.^o -f .x-'^o)

-f F(z'y, + y'z,) + G (;«' + x^) + U{y' -{- y^) +K{z' + z,) +L = 0.
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Hence the points of contact (.t,„ ?/„, z^) must lie in a ]>lane,

and the locus of the points of contact is a conic section.

Problems. — 1. Write the equation of the phiiie tangent to

.T- + y- + z^ = B^ at (xo, 2/0, Zu).

2. Write the ciiuation of the plane tangent to

a:2 + y2 4. ^2 _ 10 a; + 25 = at (5, 0, 0).

3. Write the equation of the plane tangent to

^ + ?^' + -'=lat (Xo, 2/0, 20).
a^ 62 c-

4. Write the equation of the plane tangent to

t^?l = 2xat (Xo, 2/0, 2o).
b c

5. Find equations of projections on planes ZX and ZY of locus

of points of contact of planes tangent to x- + y"^ + z"^ — 25 through

(7, - 10, 6).

6. Find equation of normal to— + ^ + — =1 at (x',ij',z'). The
a^ b'^ c^

normal to a surface at any point is the line through that point perpen-

dicular to the tangent plane at that point.

7. Find the angle between the normal to — + ^^-{-^=1 at (x', y', z')

cfi h^ c'^

and the line joining (x', y', z') and the center of the ellipsoid.

Art. 107.— Reduction of General Equation of Quadric

To determine the form and dimensions of the surfaces repre-

sented by the general second degree equation in three variables

when interpreted in rectangular space coordinates it is desirable

first to simplify the equation. This simplification is effected

by changing the position of the origin and the direction of the

axes.

The change of direction of rectangular axes is effected by

the formulas

X = x' cos a + y' cos «' + ^' cos a",

y = x' cos (3 {- y' cos /3' + 2' cos /3",

z = a;' cos y 4- y' cos y' -f- z' cos y",
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where the nine cosines are subject to the six conditions

cos^ a + cos^ /3 + cos- y = 1

,

cos'^w' + cos^)8' + cos-y' = 1,

COS^«" + C0S-/3" + COS-y" = 1,

cos a cos «' + COS (3 cos (3' + cos y cos y' = 0,

cos a cos «" + cos (3 cos (3" + cos y cos y" = 0,

cos a' COS a" + cos yS' cos /3" + cos y' cos y" = 0.

Three arbitrary conditions may therefore be imposed on the

nine cosines.

Substituting for x, y, z in

Ax" + By- -^Cz--^2 Dxy + 2 Exz + 2Fyz + 2Gx

+ 2Hy-^2 Kz + L = 0,

there results

Ax" + By" + Cz'- + 2 D'x'y' + 2 ^'a-'^' + 2 F'?/'^' + 2 G'x'

+ 2H'y' + 2K'z' + L' = 0,

when D', E', F' are functions of the nine cosines. Equate

B', E', F' to zero and determine the directions of the rectangu-

har coordinates in space in accordance with these equations.

This transformation is always possible, hence

Ax' + Bf- + Cz' + 2 G'x + 2 IFy + 2 K'z + L' =

interpreted in rectangular coordinates represents all quadric

surfaces.

Now transform to parallel axes with the origin at (a, b, c).

The transformation formulas are

X = a -It x', y = h + y', z = c + z'

and the transformed equation

Ax"+By" + Cz" + 2(Aa + G')x' + 2(Bb +H')y'+2(Cc + K')z'

+ (Aa' + BW + Cc- + 2 G\i + 2 //7> + 2 K'c + L')= 0.



SECOND DEGREE EQUATION 207

Take advantage of the three arbitrary constants a, b, c to cause

the vanishing of the coefficients of x', y', z'. This gives

= -^ b =-— ' = -=^"
A' B'

''

C'

values whicli are admissible when .1 ^^ 0, B :^ 0, C ^ 0. The
resulting equation is of the form Lx' + 3Ii/ + iVV = P.

When A ^ 0, B ^ 0, C = 0, the transformation

x = a + x',y = h-\-y',z = c + z'

gives

Ax" + By" + 2(Aa+ G)x> + 2(Bb + H')y' + K'z'

+ (Aa' + Bb' + 2 G'a + 2H'b + 2 K'c + L') = 0.

Equating to zero the coefficients of x', y' and the absolute term,

the values found for a, b, c are finite when A^O, -B =5^ 0, K' =^ 0.

The resulting equation is of the form Lx? + My- + N'z = 0.

When A^O, B^O, C = 0, K' = 0, the equation takes the

form LiT + My- + X'x + M'y + P = 0.

When url ^ 0, iJ = 0, C = 0, the equation takes the form

Mx"" + M'x + N'y + P = 0.

When A = 0, B — 0, C — 0, the equation is no longer of the

second degree.

Since x, y, z are similarly involved in

Ax" + By- + 0x^ + 2 G'x + 2 IVy + 2 K'z + L' = 0,

the vanishing of A and G' or of B and H' would lead to equa-

tions of the same form as the vanishing of C and 7i '.

Collecting results it is seen that the following equations

interpreted in rectangular coordinates represent all quadric

surfaces—
^1:^0, B^Q, C4-(), Lx'+My-+Nz-=P I

A^^O, B^O, C=0, K'^0 Lx-+My''+N'z=0 II

A^O, B^O, C=0, K'= Lx^-^My^+M'y-{-L'x+P=0\

A^O, B=0, C=0 Lx^+L'x-{-M'y+N'z+ P=0\
These equations are known as equations of the first, second,

and third class.
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Art. 108. — Sukfaces of the First Class

The equation of the first class may take the forms

(a) ix- + 31f + Nz^ = P, (b) Lx" + 3Iy- - Nz- = P,

(c) Lx^ + 3bf-Nz'^ = -P,
or similar forms with the coefficients of ar and z- or of 'if and z'

positive.

(a) The intersections of planes parallel to the coordinate

planes with Lx^ + 3Iy/ + Nz' = P are for

X = x', 3Iif + Nz~ = P- Lx'\

an ellipse whose dimensions are greatest when x' = 0, diminish

as x' increases numerically, are zero for x' = ± \-jr, imaginary
— ' X/

—

;

for y = ?/', Lx- + Nz- = P — My'-,

an ellipse whose dimensions are greatest when _?/' = 0, diminish

as y' increases numerically, are zero for ?/' = ±a/— , imaginary

when y' is numerically greater than -v/—
;

for z = z', Lx- + 3ry- = P — Nz'-,

an ellipse whose dimensions are greatest for z' = 0, diminish

as z' increases numerically, are zero when z' = ±\^, imaginary

when z' is numerically greater than a /
- •

Calling the semi-diameter on the X-axis a, on the I''-axis b,

on the .^-axis c, the equation becomes — -f^ + — = 1, the

ellipsoid. " ^ ^

The figure represented by Lx^ -\- 3Df + Nz^ = —P is imagi-

nary. The equation Lx- + 3[y- + Nz- = represents the origin.

(b) Lx^ -\- 3fy^ — Nz^ = P. The intersections are for x = x',
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3/)/- — Xz- = r — Lx'-, ;iu hyperbola whose real axis is parallel

to the I'-axis when — \/. <-<^'< +\-,> parallel to the Z-axis

when x' is numerically greater than -il -, and which becomes

two straight lines Avhen x' = ±-1/—;
' L

for !/ = y', Lx"" - .V^- = P- My",

an liy}ierbola whose real axis is parallel to the X-axis when

parallel to the Z-axis when y' is numerically greater than

(/> jp
\/— , and which becomes two straight lines when ^' = ±\/—

:

V M ^M
for z-z', Lx' + My- = P + Nz'-,

an ellipse, always real, whose dimensions are least when z' = 0,

and increase indefinitely when z' increases indefinitely in nu-

merical value. Calling the intercepts of this surface on the

X-axis a, on the F-axis b, on the Z-axis cV— 1, the equation

becomes — -f
-'^ — - = 1, the hyperboloid of one sheet.

a^ b' &
(c) Lx' -f My' -Nz' = - P.

The intersections are

for X = x', My' -Nz' = -P- Lx",

an hyperbola with its real axis parallel to the Z-axis, dimen-

sions least when a;' = 0, increasing indefinitely with the numeri-

cal value of x'
;

for y = y', Lx" -Nz' = - P- My",

an hyperbola with its real axis parallel to the Z-axis, dimen-

sions least when y' — 0, increasing indefinitely with the numeri-

cal value of y'
;

for z = z', Lx' + My- = Lz" - P,
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an ellipse, imaginary when —a/— < 2;' < -\-\y' dimensions

zero for z' — ±\j—, increasing indefinitely with the numerical

value of z'.

Calling the intercepts of this surface on the axes X, Y, Z
respectively, aV— 1, 6V— 1. c, the equation becomes

a? Ir c-

the hyperboloid of two sheets.

The surfaces of the first class are ellipsoids and hyperboloids.

Art. 109. — Surfaces of the Second Class

The equation of the second class may take the forms

(a) Lx' + Ml/ ± N'z = 0, (&) Lx" - Mxf ± N'z = 0.

(ct) Lx- + 3fy- = N'z. The intersections are

for x = x', Mf- = N'z - Lx'\

a parabola Avhose parameter is constant, axis parallel to Z-axis,

and whose vertex continually recedes from the origin

;

for y = y', Lx^ = N'z - My",

a parabola whose parameter is constant, axis parallel to Z-axis,

and whose vertex continually recedes from the origin

;

for z = z', Lx^ + 3fy- = N'z',

an ellipse whose dimensions are zero for z' = and increase

indefinitely as z' increases from to + co, but are imaginary

for2;'<0.

This surface is the elliptic paraboloid. The equation

Lx^ + My^ = — N'z represents an elliptic paraboloid real for

negative values of z.

(b) Lx^ — My- = N'z. The intersections are

for x = x', My- = Lx'- - N'z,

a parabola of constant parameter whose axis is parallel to
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the Z-axis and whose vertex recedes from the origin as x'

increases numerically

;

for y = ij', Lx^ = N'z + My'-,

a parabola of constant parameter whose axis is parallel to the

Z-axis and whose vertex recedes from the origin as y' increases

numerically
;

for z = z', Lxr — My- = N'z',

an hyperbola whose real axis is parallel to the X-axis when
z > 0, paralh'l to the I'-axis when z' < 0, and which becomes

two straight lines when z' = 0.

The surface is the hyperbolic paraboloid.

The surfaces of the second class are paraboloids.

Art. 110.— Surfaces of the Third Class

The equation Lx^ + 3fy^ + L'x + 31
'y + P = does not con-

tain z and therefore represents a cylindrical surface whose

elements are parallel to the

Z-axis. The directrix in

the XF-plane is an ellipse

Avhen L and 3f have like

signs, an hyperbola when

L and 31 have unlike signs.

The surface represented

by the e(piation

Lx- + L'x + 31'

y

is intersected by the A'l"-

})lane in the parabola

Lx- + L'x + 3['y + P - 0,

by the ZX-plane in the

parabola

Lx- + L'x -\-N'z + P = 0,
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by planes x = x' parallel to the I'Z-plane in parallel straight

lines

N'y + L'z + Mx'- + 3I'x' + P = 0.

Hence the surface is a parabolic cylinder with elements parallel

to the ZF-plane.

The surfaces of the third class are cylindrical surfaces with

elliptic, hyperbolic, or parabolic bases.

It is now seen that the second degree equation in three

variables represents ellipsoids, hyperboloids, paraboloids, and

cylindrical surfaces with conic sections as bases. Conical sur-

faces are varieties of hyperboloids.

Art. 111.— QuADRics as Ruled Surfaces

The equation of the hyperboloid of one sheet '—^
^
= 1 — --^

is satisfied by all values of x, y, z, which satisfy simultaneously

the pair of equations

l-l=t.(l-^, ^ + ?=.lfl+f\ (1)

or the pair

a c \ bj a c fx

- - ^+A - + ^=lfl-?A (3)
a c \ oj a c fjLc a'V b

when fx and fx' are parameters. For all values of /x equations

(1) represent two planes whose intersection must lie on the

hyperboloid. Likewise equations (2) for all values of fx' repre-

sent two planes whose intersection must lie on the hyperboloid.

There are therefore two systems of straight lines generating

the hyperboloid of one sheet.

Each straight line of one system is cut by every straight line

of the other system. For the four equations (1) and (2) made

simultaneous are equivalent to the three equations
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from ^vlli{•]l

// M — /a' X 1 + llfx' Z _\ — fjifx.'

b /u. + /a' « /A + /a' c /a + /a'

Ko two straight lines of the same system intersect. "Write

the equations of lines of the first system corresponding to //j

and fx.0. INfaking the equations simultaneous (/jLi—fi^)! 1 — --Wo,
/"l 1 \ / \ \ ^/

and (- .Yl+?^]=0. Hence either n-i—fx-., or y = h and

II
= — h. Since _?/ cannot be at once + h and — 6, //.i

= yu,o ; that

is. two lines of the same system can intersect only if they

coincide.

Observing that the equation of the hyperbolic paraboloid

'^ = 2 .T is satisfied by the values of x, y, z, which satisfy

either of the pairsj, of equations

z y _ I X

Vc Vb /*

'
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it is found that

^x^y

the powers of a^'if + h-x^ in the denominators increasing in

the expansion by the binomial formula. Hence the z of the

hyperboloid -„ + ^ — - = 1, and the z of the cone
o} b^ c-

•ii + ^_ _ ^ =
ce h"- &

approach equality as x and y are indefinitely increased ; that

is, the conical surface is tangent to the hyperboloid at infinity.

^— ^ = is shown to be asymp-
a- h^ <T

totic to the hyperboloid of two sheets '-, — ^—;,
= 1-

a^ IP- &

Art. 113.

—

Orthogonal Systems of Quadrics

The equation (1 )
—^ h tt^^ + -^r^— = 1' where a>h>c

and A is a parameter, represents an ellipsoid when co > A > — c^,

an hyperboloid of one sheet when — c^ > A > — Ir, an hyper-

boloid of two sheets when — 6^>A> — a', an imaginary sur-

face when A < — al

Through every point of space {x\ y\ z') there passes one

ellipsoid, one hyperboloid of one sheet, and one hyperboloid of

two sheets of the system of quadrics represented by equa-

tion (1). Por, if A is supposed to vary continuously from

+ oo to — (X) through 0, the function of A,

a^ -I- A b- + X c- + A.

1,
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is — when A = -f vd and + when A is just greater than — r,

— when A is just less than — c" and + when A is just greater

than — //-, — wlien A is just less than — b^ and again + when
A is just greater than — cr. Hence

must determine three real values for A; one between + oo and
— r, another between — c- and — b^, a third between — b' and
— ((-.

Let A„ Ao, A3 be the roots of equation (2) ; that is, let

g-'-' y'- z'- _ . -,

^.'2 -,,»2 ^i-'

- 1, (4)
a- + A., b'^ + A, c- + A;

a- + A3 6- + A3 C- + A3
^'^

The equations of tangent planes to the quadrics of system

(1) corresponding to Ai, As, A3 at the point of intersection

{x\ y\ z') are

XX
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Hence equation (1) represents an orthogonal system of quad-

rics.

Since through every point of space there passes one ellipsoid,

one hyperboloid of one sheet, and one hyperboloid of two

sheets of the orthogonal system of quadrics, the point in

space is determined by specifying the quadrics of the orthogo-

nal system on which the point lies. This leads to elliptic

coordinates in space, developed by Jacobi and Lame in 1839,

by Jacobi for use in geometry, by Lame for use in the theory

of heat.

If a bar kept at a constant temperature is placed in a homo-

geneous medium, when the heat conditions of the medium

have become permanent the isothermal surfaces are the ellip-

soids, the surfaces along which the heat flows the hyperboloid s,

of the orthogonal system of quadrics.
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